Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs).
View Article and Find Full Text PDFThe synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties.
View Article and Find Full Text PDFIn situ remediation applications of ammonia (NH) gas have potential for sequestration of subsurface contamination. Ammonia gas injections initially increase the pore water pH leading to mineral dissolution followed by formation of secondary precipitates as the pH is neutralized. However, there is a lack of understanding of fundamental alteration processes due to NH treatment.
View Article and Find Full Text PDFSimulations and experiments have revealed enormous transport rates through carbon nanotube (CNT) channels when a pressure gradient drives fluid flow, but comparatively little attention has been given to concentration-driven transport despite its importance in many fields. Here, membranes are fabricated with a known number of single-walled CNTs as fluid transport pathways to precisely quantify the diffusive flow through CNTs. Contrary to early experimental studies that assumed bulk or hindered diffusion, measurements in this work indicate that the permeability of small ions through single-walled CNT channels is more than an order of magnitude higher than through the bulk.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Direct ink writing (DIW) three-dimensional (3D) printing provides a revolutionary approach to fabricating components with gradients in material properties. Herein, we report a method for generating colloidal germania feedstock and germania-silica inks for the production of optical quality germania-silica (GeO-SiO) glasses by DIW, making available a new material composition for the development of multimaterial and functionally graded optical quality glasses and ceramics by additive manufacturing. Colloidal germania and silica particles are prepared by a base-catalyzed sol-gel method and converted to printable shear-thinning suspensions with desired viscoelastic properties for DIW.
View Article and Find Full Text PDFRare earth elements (REEs) are indispensable components of many green technologies and of increasing demand globally. However, refining REEs from raw materials using current technologies is energy intensive and enviromentally damaging. Here, we describe the development of a novel biosorption-based flow-through process for selective REE recovery from electronic wastes.
View Article and Find Full Text PDFOur understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail.
View Article and Find Full Text PDFWe present a chemical strategy to engineer analogs of the tumor-homing peptide CREKA (Cys-Arg-Glu-Lys-Ala), which binds to fibrin and fibrin-associated clotted plasma proteins in tumor vessels (Simberg et al. in Proc Natl Acad Sci USA 104:932-936, 2007) with improved ability to inhibit tumor growth. Computer modeling using a combination of simulated annealing and molecular dynamics were carried out to design targeted replacements aimed at enhancing the stability of the bioactive conformation of CREKA.
View Article and Find Full Text PDFPorous silica materials are attractive for hemorrhage control because of their blood clot promoting surface chemistry, the wide variety of surface topologies and porous structures that can be created, and the potential ability to achieve high loading of therapeutic proteins within the silica support. We show that silica cell-window size variation in the nanometers to tens of nanometers range greatly affects the rate at which blood clots are formed in human plasma, indicating that window sizes in this size range directly impact the accessibility and diffusion of clotting-promoting proteins to and from the interior surfaces and pore volume of mesocellular foams (MCFs). These studies point toward a critical window size at which the clotting speed is minimized and serve as a model for the design of more effective wound-dressing materials.
View Article and Find Full Text PDF