Behavioural responses to temperature are critical for survival, and animals from insects to humans show strong preferences for specific temperatures. Preferred temperature selection promotes avoidance of adverse thermal environments in the short term and maintenance of optimal body temperatures over the long term, but its molecular and cellular basis is largely unknown. Recent studies have generated conflicting views of thermal preference in Drosophila, attributing importance to either internal or peripheral warmth sensors.
View Article and Find Full Text PDFMembrane-permeable compounds that reversibly inhibit a particular step in gene expression are highly useful tools for cell biological and biochemical/structural studies. In comparison with other gene expression steps where multiple small molecule effectors are available, very few compounds have been described that act as general inhibitors of pre-mRNA splicing. Here we report construction and validation of a set of mammalian cell lines suitable for the identification of small molecule inhibitors of pre-mRNA splicing.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) secondary kinase domain T790M non-small cell lung cancer (NSCLC) mutation enhances receptor catalytic activity and confers resistance to the reversible tyrosine kinase inhibitors gefitinib and erlotinib. Currently, irreversible inhibitors represent the primary approach in clinical use to circumvent resistance. We show that higher concentrations of the irreversible EGFR inhibitor CL-387,785 are required to inhibit EGFR phosphorylation in T790M-expressing cells compared with EGFR mutant NSCLC cells without T790M.
View Article and Find Full Text PDFActivating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain determine responsiveness to EGFR tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer (NSCLC). The modulation of transcriptional pathways by mutant EGFR signaling is not fully understood. Previously, we and others identified a single base pair change leading to a threonine to methionine (T790M) amino acid alteration in the ATP-binding pocket of the EGFR as a common mechanism of acquired resistance.
View Article and Find Full Text PDFMutation-specific cancer therapy has shown promising clinical efficacy. In non-small-cell lung cancer (NSCLC), the presence of mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase correlates with clinical response to small-molecule tyrosine kinase inhibitors. Here, we show that cells harboring the G776insV_G/C mutation in the related ERBB2 tyrosine kinase (also known as HER2 or Neu), present in a small percentage of NSCLCs, are sensitive to HKI-272, an irreversible dual-specific kinase inhibitor targeting both EGFR and ERBB2.
View Article and Find Full Text PDFSomatic mutations in the kinase domain of the epidermal growth factor receptor (EGFR), including L858R and exon 19 deletions, underlie responsiveness to gefitinib and erlotinib in non-small cell lung cancer (NSCLC). Acquired resistance to these tyrosine kinase inhibitors is in some cases mediated by a second mutation, T790M. Ansamycin antibiotics, such as geldanamycin, potently inhibit heat shock protein 90 (Hsp90), promoting ubiquitin-mediated degradation of oncogenic kinases that require the chaperone for proper conformational folding.
View Article and Find Full Text PDFTransformed cells are selectively sensitized to apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol after their recruitment to S phase. During S phase, cyclin A-dependent kinase activity neutralizes E2F-1 allowing orderly S phase progression. Inhibition of cyclin A-dependent kinase by flavopiridol could cause inappropriately persistent E2F-1 activity during S phase traversal and exit.
View Article and Find Full Text PDF