Publications by authors named "April M Clayton"

Background: Macaque models of simian or simian/human immunodeficiency virus (SIV or SHIV) infection are critical for the evaluation of antiretroviral (ARV)-based HIV treatment and prevention strategies. However, modelling human oral ARV administration is logistically challenging and fraught by limited adherence. Here, we developed a protocol for administering daily oral doses of ARVs to macaques with a high rate of compliance.

View Article and Find Full Text PDF

Introduction: Laboratory animal facilities aim to provide excellence in animal care and welfare and support scientific research. Critical to these goals is to ensure a safe work environment for personnel comprising veterinary and animal care, laboratory research, and maintenance staff.

Objective: Thus, performing occupational risk assessments allows for evaluation of risks from identified hazards associated with a variety of tasks ongoing in laboratory animal facilities.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for considerable epidemics worldwide and recently emerged in the Americas in 2013. CHIKV may cause long-lasting arthralgia after acute infection. With currently no licensed vaccines or antivirals, the design of effective therapies to prevent or treat CHIKV infection is of utmost importance and will be facilitated by increased understanding of the dynamics of chikungunya.

View Article and Find Full Text PDF

Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe.

View Article and Find Full Text PDF

The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite's successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito's innate immune system. This review will discuss our current understanding of the Anopheles mosquito's innate immune responses against the malaria parasite Plasmodium and the influence of the insect's intestinal microbiota on parasite infection.

View Article and Find Full Text PDF

Malaria parasite transmission depends upon the successful development of Plasmodium in its Anopheles mosquito vector. The mosquito's innate immune system constitutes a major bottleneck for parasite population growth. We show here that in Anopheles gambiae, the midgut-specific transcription factor Caudal acts as a negative regulator in the Imd pathway-mediated immune response against the human malaria parasite Plasmodium falciparum.

View Article and Find Full Text PDF

Current efforts have proven inadequate to stop the transmission of Plasmodium parasites, and hence the spread of malaria, by Anopheles mosquitoes. Therefore, a novel arsenal of strategies for inhibiting Plasmodium infection of mosquitoes is urgently needed. In this paper, we summarize research on two approaches to malaria control, a low-tech strategy based on parasite inhibition by the mosquito's natural microflora, and a high-tech strategy using genetic modification of mosquitoes that renders them resistant to infection and discuss advantages and disadvantages for both approaches.

View Article and Find Full Text PDF

Malaria parasite transmission depends on the successful transition of Plasmodium through discrete developmental stages in the lumen of the mosquito midgut. Like the human intestinal tract, the mosquito midgut contains a diverse microbial flora, which may compromise the ability of Plasmodium to establish infection. We have identified an Enterobacter bacterium isolated from wild mosquito populations in Zambia that renders the mosquito resistant to infection with the human malaria parasite Plasmodium falciparum by interfering with parasite development before invasion of the midgut epithelium.

View Article and Find Full Text PDF

Like other eukaryotes, trypanosomes have an essential type II fatty acid synthase in their mitochondrion. We have investigated the function of this synthase in bloodstream-form parasites by studying the effect of a conditional knockout of acyl carrier protein (ACP), a key player in this fatty acid synthase pathway. We found that ACP depletion not only caused small changes in cellular phospholipids but also, surprisingly, caused changes in the kinetoplast.

View Article and Find Full Text PDF