Agriculture generates ~83% of total US ammonia (NH) emissions, potentially adversely impacting sensitive ecosystems through wet and dry deposition. Regions with intense livestock production, such as the dairy region of south-central Idaho, generate hotspots of NH emissions. Our objective was to measure the spatial and temporal variability of NH across this region and estimate its dry deposition.
View Article and Find Full Text PDFWaste-to-energy systems can provide a functional demonstration of the economic and environmental benefits of circularity, innovation, and reimagining existing systems. This study offers a robust quantification of the greenhouse gas (GHG) emission reduction potential of the adoption of anaerobic digestion (AD) technology on applicable large-scale dairy farms in the contiguous United States. GHG reduction estimates were developed through a robust life cycle modeling framework paired with sensitivity and uncertainty analyses.
View Article and Find Full Text PDFContinuous application of dairy manure to soils can lead to excessive phosphorus (P) accumulation (legacy P), which requires understanding for managing nutrient availability and leaching. This study was conducted in Kimberly, ID, where dairy manure or conventional fertilizer was applied to calcareous soil plots under continuous crop rotations for 8 years (2013-2020), followed by 2 years with no amendment. To understand legacy P behavior in the soils, total P, organic/inorganic P, and plant-available Olsen bicarbonate P and Truog extraction measurements were made from surface and subsurface samples.
View Article and Find Full Text PDFPhosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated.
View Article and Find Full Text PDFLivestock manure management systems can be significant sources of nitrous oxide (N O), methane (CH ), and ammonia (NH ) emissions. Many studies have been conducted to improve our understanding of the emission processes and to identify influential variables in order to develop mitigation techniques adapted to each manure management step (animal housing, outdoor storage, and manure spreading to land). The international project DATAMAN (http://www.
View Article and Find Full Text PDFThe manureshed represents cropland needed to safely assimilate manure nutrients from an animal feeding operation. Dairy manuresheds can be contained on-farm but may need to involve additional farms that can assimilate excess nutrients. We present case studies reviewing challenges and opportunities to manureshed management in four major dairy-producing states using available information on local manuresheds.
View Article and Find Full Text PDFDairy manure is commonly applied to irrigated agricultural crops in the Magic Valley Region of southern Idaho, which has reported to impact the quality of surface and ground water. In this study, we used the Root Zone Water Quality Model (RZWQM2) to provide information about the long-term implications of manure applications. RZWQM2 was first calibrated and validated using 4 years of data from a long-term study with annual and biennial manure application rates of 18 Mg ha, 36 Mg ha, and 52 Mg ha, along with a control and conventional fertilizer treatment for crop yield, soil water and soil N.
View Article and Find Full Text PDFManure application to land and deposition of urine and dung by grazing animals are major sources of ammonia (NH ) and nitrous oxide (N O) emissions. Using data on NH and N O emissions following land-applied manures and excreta deposited during grazing, emission factors (EFs) disaggregated by climate zone were developed, and the effects of mitigation strategies were evaluated. The NH data represent emissions from cattle and swine manures in temperate wet climates, and the N O data include cattle, sheep, and swine manure emissions in temperate wet/dry and tropical wet/dry climates.
View Article and Find Full Text PDFNitrous oxide (N O), ammonia (NH ), and methane (CH ) emissions from the manure management chain of livestock production systems are important contributors to greenhouse gases (GHGs) and NH emitted by human activities. Several studies have evaluated manure-related emissions and associated key variables at regional, national, or continental scales. However, there have been few studies focusing on the drivers of these emissions using a global dataset.
View Article and Find Full Text PDFImproving our understanding of antibiotic resistance in soils is important for the protection of human, animal and ecological health. In south-central Idaho, antibiotic resistance genes (ARGs) [blaCTX-M-1, erm(B), sul1, tet(B), tet(M) and tet(X)] and a class 1 integron-integrase gene (intI1) were quantified in agricultural and non-agricultural soils (96 total sites) under various land use practices (cropland, forestland, inactive cropland, pastureland, rangeland, recreational, residential). We hypothesized that gene occurrence and abundance would be greater in intensively managed agricultural soils.
View Article and Find Full Text PDFSci Total Environ
September 2018
The application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) water, and diluted wastewater spiked with copper sulfate (50 mg Cu L), while control plots were irrigated with canal water. In addition, half of all plots were either planted with wheat or were left as bare soil.
View Article and Find Full Text PDFAnimal manures are commonly used to enhance soil fertility, but there are growing concerns over the impact of this practice on the development and dissemination of antibiotic resistance. The aim of this field study was to determine the effect of annual dairy manure applications on the occurrence and abundance of antibiotic resistance genes (ARGs) in an agricultural soil during four years of crop production. Treatments included (i) control (no fertilizer or manure), (ii) inorganic fertilizer and (iii) dairy manure at three application rates.
View Article and Find Full Text PDFWith increased concern over the effects of livestock production on the environment, a number of new technologies have evolved to help scientists evaluate the environmental footprint of beef cattle. The objective of this review was to provide an overview of some of those techniques. These techniques include methods to measure individual feed intake, enteric methane emissions, ground-level greenhouse gas and ammonia emissions, feedlot and pasture emissions, and identify potential pathogens.
View Article and Find Full Text PDFNitrogen excreted in dairy manure can be potentially transformed and emitted as NH, which can create livestock and human respiratory problems and be an indirect source of NO. The objectives of this study were to: (i) investigate environmental factors influencing NH emissions from dairy housing; and (ii) identify key explanatory variables in the NH emissions prediction from dairy housing using a meta-analytical approach. Data from 25 studies were used for the preliminary analysis, and data from 10 studies reporting 87 treatment means were used for the meta-analysis.
View Article and Find Full Text PDFJ Environ Qual
September 2015
The presence of purple bacteria in manure storage lagoons is often associated with reduced odors. In this study, our objectives were to determine the occurrence of purple sulfur bacteria (PSB) in seven dairy wastewater lagoons and to identify possible linkages between wastewater properties and purple blooms. Community DNA was extracted from composited wastewater samples, and a conservative 16S rRNA gene sequence within and genes found in both purple sulfur and nonsulfur bacteria was amplified.
View Article and Find Full Text PDFWatersheds using surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000-ha Upper Snake Rock (USR) watershed from 2005 to 2008 showed that, on average, water diverted from the Snake River annually supplied 547 kg ha of total suspended solids (TSS), 1.
View Article and Find Full Text PDFAmmonia, greenhouse gases, and particulate emissions from livestock operations can potentially affect air quality at local, regional, and even global scales. These pollutants, many of which are generated through various anthropogenic activities, are being increasingly scrutinized by regulatory authorities. Regulation of emissions from livestock production systems will ultimately increase on farm costs, which will then be passed onto consumers.
View Article and Find Full Text PDFJ Environ Qual
September 2013
Dairy wastewaters from storage ponds are commonly land applied to irrigate forage crops. Given that diverse microbial populations are associated with cattle feces, the objective of this study was to use a culture-independent approach to characterize bacteria and archaea in dairy wastewaters. Using domain-specific primers, a region of the 16S rRNA gene was amplified from pooled DNA extracts from 30 dairy wastewaters and subsequently used to create a clone library.
View Article and Find Full Text PDFConcentrated dairy operations emit trace gases such as ammonia (NH), methane (CH), and nitrous oxide (NO) to the atmosphere. The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. Our objective was to determine the emission rates of NH, CH, and NO from the open-freestall and wastewater pond source areas on a commercial dairy in southern Idaho using a flush system with anaerobic digestion.
View Article and Find Full Text PDFThe choice of the type of background spectrum affects the credibility of open-path Fourier transform infrared spectroscopy (OP/FT-IR) data, and consequently, the quality of data analysis. We systematically investigated several properties of the background spectrum. The results show that a short-path background measured with the lowest amplifier gain could significantly reduce noise in the calculated absorbance spectrum, by at least 30% in our case.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2012
Zoonotic pathogens in land-applied dairy wastewaters are a potential health risk. The occurrence and abundance of 10 pathogens and 3 fecal indicators were determined by quantitative real-time PCR (qPCR) in samples from 30 dairy wastewaters from southern Idaho. Samples tested positive for Campylobacter jejuni, stx(1)- and eaeA-positive Escherichia coli, Listeria monocytogenes, Mycobacterium avium subsp.
View Article and Find Full Text PDFWaste molding and core sands from the foundry industry are successfully being used around the world in geotechnical and soil-related applications. Although waste foundry sands (WFSs) are generally not hazardous in nature, relevant data is currently not available in Argentina. This study aimed to quantify metals in waste molding and core sands from foundries using a variety of metal-binder combinations.
View Article and Find Full Text PDFConcentrated animal feeding operations emit trace gases such as ammonia (NH₃), methane (CH₄), carbon dioxide (CO₂), and nitrous oxide (N₂O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH₃, CH₄, CO₂, and N₂O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho.
View Article and Find Full Text PDFThe use of multiple calibration sets in partial least squares (PLS) regression was proposed to improve the quantitative determination of NH(3) over wide concentration ranges from open-path Fourier transform infrared (OP/FT-IR) spectra. The spectra were measured near animal farms, where the path-integrated concentration of NH(3) can fluctuate from nearly zero to as high as approximately 1000 ppm-m. PLS regression with a single calibration set did not cover such a large concentration range effectively, and the quantitative accuracy was degraded due to the nonlinear relationship between concentration and absorbance for spectra measured at low resolution (1 cm(-1) and poorer.
View Article and Find Full Text PDF