With increasing commercialization of high volume, two-dimensional carbon nanomaterials comes a greater likelihood of environmental release. In aquatic environments, black carbon binds contaminants like aromatic hydrocarbons, leading to changes in their uptake, bioavailability, and toxicity. Engineered carbon nanomaterials can also adsorb pollutants onto their carbon surfaces, and nanomaterial physicochemical properties can influence this contaminant interaction.
View Article and Find Full Text PDFBackground: Multi-walled carbon nanotubes (MWCNT) have been shown to elicit the release of inflammatory and pro-fibrotic mediators, as well as histopathological changes in lungs of exposed animals. Current standards for testing MWCNTs and other nanoparticles (NPs) rely on low-throughput in vivo studies to assess acute and chronic toxicity and potential hazard to humans. Several alternative testing approaches utilizing two-dimensional (2D) in vitro assays to screen engineered NPs have reported conflicting results between in vitro and in vivo assays.
View Article and Find Full Text PDFTo identify the potential environmental impacts of aquatic pollutants, rapid and sensitive screening tools are needed to assess adaptive and toxic responses. This study characterizes a novel fish liver microtissue model, produced with the cell line PLHC-1, as an in vitro aquatic toxicity testing platform. These 3D microtissues remain viable and stable throughout the 8-day testing period and relative to 2D monolayers, show increased basal expression of the xenobiotic metabolizing enzyme cytochrome P450 1A (Cyp1a).
View Article and Find Full Text PDFThree-dimensional (3-D) in vitro platforms have been shown to closely recapitulate human physiology when compared with conventional two-dimensional (2-D) in vitro or in vivo animal model systems. This confers a substantial advantage in evaluating disease mechanisms, pharmaceutical drug discovery, and toxicity testing. Despite the benefits of 3-D cell culture, limitations in visualization and imaging of 3-D microtissues present significant challenges.
View Article and Find Full Text PDFFine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean.
View Article and Find Full Text PDF