Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction.
View Article and Find Full Text PDFFunctional genetic screens by CRISPR-Cas9 allow for the unbiased discovery of proteins causally involved in complex biological processes. In recent years, this approach has been used by multiple laboratories to uncover a range of tumor cell regulators determining immune sensitivity. In this review, we provide an overview of genetic screens carried out both and .
View Article and Find Full Text PDFTumor escape mechanisms for immunotherapy include deficiencies in antigen presentation, diminishing adaptive CD8 T cell antitumor activity. Although innate natural killer (NK) cells are triggered by loss of MHC class I, their response is often inadequate. To increase tumor susceptibility to both innate and adaptive immune elimination, we performed parallel genome-wide CRISPR-Cas9 knockout screens under NK and CD8 T cell pressure.
View Article and Find Full Text PDFThe cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1.
View Article and Find Full Text PDFAlthough immune checkpoint blockade (ICB) has shown remarkable clinical benefit in a subset of patients with melanoma and lung cancer, most patients experience no durable benefit. The receptor tyrosine kinase AXL is commonly implicated in therapy resistance and may serve as a marker for therapy-refractory tumors, for example in melanoma, as we previously demonstrated. Here, we show that enapotamab vedotin (EnaV), an antibody-drug conjugate targeting AXL, effectively targets tumors that display insensitivity to immunotherapy or tumor-specific T cells in several melanoma and lung cancer models.
View Article and Find Full Text PDFNew opportunities are needed to increase immune checkpoint blockade (ICB) benefit. Whereas the interferon (IFN)γ pathway harbors both ICB resistance factors and therapeutic opportunities, this has not been systematically investigated for IFNγ-independent signaling routes. A genome-wide CRISPR/Cas9 screen to sensitize IFNγ receptor-deficient tumor cells to CD8 T cell elimination uncovered several hits mapping to the tumor necrosis factor (TNF) pathway.
View Article and Find Full Text PDF