Publications by authors named "Apresio K Fajrial"

Regular physical exercise has been shown to delay and alleviate neurodegenerative diseases. Yet, optimum physical exercise conditions that provide neuronal protection and exercise-related factors remain poorly understood. Here, we create an Acoustic Gym on a chip through the surface acoustic wave (SAW) microfluidic technology to precisely control the duration and intensity of swimming exercise of model organisms.

View Article and Find Full Text PDF

is an important genetic model for neuroscience studies, used for analyses of how genes control connectivity, neuronal function, and behavior. To date, however, most studies of neuronal function in are incapable of obtaining microscopy imaging with subcellular resolution and behavior analysis in the same set of animals. This constraint stems from the immobilization requirement for high-resolution imaging that is incompatible with behavioral analysis using conventional immobilization techniques.

View Article and Find Full Text PDF

Manipulation of micro/nano particles has been well studied and demonstrated by optical, electromagnetic, and acoustic approaches, or their combinations. Manipulation of internal structure of droplet/particle is rarely explored and remains challenging due to its complicated nature. Here we demonstrated the manipulation of internal structure of disk-in-sphere endoskeletal droplets using acoustic wave.

View Article and Find Full Text PDF

Vaporizable hydrocarbon-in-fluorocarbon endoskeletal droplets are a unique category of phase-change emulsions with interesting physical and thermodynamic features. Here, we show microfluidic fabrication of various morphologies, such as solid-in-liquid, liquid-in-solid, and Janus-type, of complex solid -CH or -CH and liquid -CF droplets. Furthermore, we investigated the vaporization behavior of these endoskeletal droplets, focusing on the effects of heat treatment and core size.

View Article and Find Full Text PDF

Manipulation of fluid flow is paramount for microfluidic device operation. Conventional microfluidic pumps are often expensive, bulky, complicated, and not amenable in limited resource settings. Here, we introduce a Fully self-sufficient, RobUst, Gravity-Assisted, Low-cost (FRUGAL) microfluidic pump.

View Article and Find Full Text PDF

Reciprocal interactions between the cell nucleus and the extracellular matrix lead to macroscale tissue phenotype changes. However, little is known about how the extracellular matrix environment affects gene expression and cellular phenotype in the native tissue environment. Here, it is hypothesized that enzymatic disruption of the tissue matrix results in a softer tissue, affecting the stiffness of embedded cell and nuclear structures.

View Article and Find Full Text PDF

A surface acoustic wave (SAW) is a sound wave travelling on the surface of an elastic material. SAW offers a robust control of the acoustic energy leading to an unparalleled versatility. As an actuator, SAW can exert acoustic forces on particles and fluids thus enabling dexterous micro/nanoscale manipulations.

View Article and Find Full Text PDF

Characterization of cell physical biomarkers is vital to understand cell properties and applicable for disease diagnostics. Current methods used to analyze physical phenotypes involve external forces to deform the cells. Alternatively, internal tension forces via osmotic swelling can also deform the cells.

View Article and Find Full Text PDF

Gene editing is a versatile technique in biomedicine that promotes fundamental research as well as clinical therapy. The development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing machinery has accelerated the application of gene editing. However, the delivery of CRISPR components often suffers when using conventional transfection methods, such as viral transduction and chemical vectors, due to limited packaging size and inefficiency toward certain cell types.

View Article and Find Full Text PDF

In recent years, microfluidic devices have become an important tool for use in lab-on-a-chip processes, including drug screening and delivery, bio-chemical reactions, sample preparation and analysis, chemotaxis, and separations. In many such processes, a flat cross-sectional concentration profile with uniform flow velocity across the channel is desired to achieve controlled and precise solute transport. This is often accommodated by the use of electroosmotic flow, however, it is not an ideal for many applications, particularly biomicrofluidics.

View Article and Find Full Text PDF

Nanostructured devices are able to foster the technology for cell membrane poration. With the size smaller than a cell, nanostructures allow efficient poration on the cell membrane. Emerging nanostructures with various physical transduction have been demonstrated to accommodate effective intracellular delivery.

View Article and Find Full Text PDF

We study the adsorption and the dissociation of O molecules on the active sites of a boron-doped pyrolyzed Fe-N-C catalyst using density functional theory. Initially, we determine the possible structure of the FeN active site of the pyrolyzed Fe-N-C catalyst doped with a boron atom by considering the presence of a nitrogen atom as a metal-free site. The most stable configuration of the structure occurs when the boron and nitrogen atoms coalesce with the FeN site forming a complex site.

View Article and Find Full Text PDF