The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) have emerged as a new alternative and efficient tool for transporting molecules with biotechnological and biomedical applications, because of their remarkable physicochemical properties. Encapsulation of functional molecules into the hollow chambers of CNTs can not only stabilize encapsulated molecules but also generate new nanodevices. In this work, we have demonstrated that CNTs can function as controllable carriers to transport small-molecule compounds (SMCs) loaded inside their hollow tunnels onto targeted cells.
View Article and Find Full Text PDF