CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a ( = 0.
View Article and Find Full Text PDFBackground And Objectives: The assessment of health-related quality of life (HRQoL) in patients with amyotrophic lateral sclerosis (ALS) is heterogeneous and inconsistent. The objectives of this study were (1) to develop a comprehensive conceptual framework of HRQoL in ALS and (2) map the content of existing patient-reported outcome measures (PROMs) used in ALS to this novel framework.
Methods: Our model of HRQoL in ALS (Health-related Quality of life in Amyotrophic Lateral Sclerosis, QuALS) was developed from a systematic literature review and consultative input from key stakeholders (patients, carers, and health care professionals).
Richter transformation (RT) represents an aggressive histological transformation from chronic lymphocytic leukaemia, most often to a large B cell lymphoma. It is characterised by chemo-resistance and subsequent short survival. Drug development has struggled over recent years in light of the aggressive kinetics of the disease, lack of pivotal registrational trials and relative rarity of the phenomenon.
View Article and Find Full Text PDFCRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a , and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a ( = 0.
View Article and Find Full Text PDFThe value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity.
View Article and Find Full Text PDFDespite the development of highly effective, targeted inhibitors of B-cell proliferation and anti-apoptotic pathways in chronic lymphocytic leukemia (CLL), these treatments are not curative, and many patients will develop either intolerance or resistance to these treatments. Transformation of CLL to high-grade lymphoma-the so-called Richter syndrome (RS)-remains a highly chemoimmunotherapy-resistant disease, with the transformation occurring following targeted inhibitors for CLL treatment being particularly adverse. In light of this, cellular therapy in the form of allogenic stem cell transplantation and chimeric antigen receptor T-cell therapy continues to be explored in these entities.
View Article and Find Full Text PDFThe transformation of chronic lymphocytic leukemia (CLL) to high-grade B-cell lymphoma is known as Richter syndrome (RS), a rare event with dismal prognosis. In this study, we conducted whole-genome sequencing (WGS) of paired circulating CLL (PB-CLL) and RS biopsies (tissue-RS) from 17 patients recruited into a clinical trial (CHOP-O). We found that tissue-RS was enriched for mutations in poor-risk CLL drivers and genes in the DNA damage response (DDR) pathway.
View Article and Find Full Text PDFBackground: Transformation of chronic lymphocytic leukaemia (CLL) to diffuse large B-cell lymphoma (DLCBL) type Richter's syndrome (RS) carries a dismal prognosis. Standard-of-care chemoimmunotherapy for de novo RS is inadequate with median survival of less than one year. Patients are frequently elderly or have co-morbidities limiting dose-intense chemotherapy.
View Article and Find Full Text PDFThe Bruton tyrosine kinase (Btk) inhibitor ibrutinib induces platelet dysfunction and causes increased risk of bleeding. Off-target inhibition of Tec is believed to contribute to platelet dysfunction and other side effects of ibrutinib. The second-generation Btk inhibitor acalabrutinib was developed with improved specificity for Btk over Tec.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
October 2017
Elevated platelet counts are frequently encountered in hospital medicine and arise from both physiological and pathological mechanisms. Thrombocytosis may be secondary, reflecting an inflammatory state, iron deficiency, recent surgery or point towards an underlying neoplasm. Thrombocytosis may be the presenting sign of solid tumours and haematological conditions.
View Article and Find Full Text PDFMinimal residual disease negative complete response (MRD-negative CR) provides an early marker for time to treatment failure (TTF) in CLL treated with fludarabine, cyclophosphamide, and rituximab (FCR). MRD was assessed after four FCR cycles (FCR4); MRD-negative CR patients discontinued treatment. Fifty-two patients (35M; 17F) were enrolled.
View Article and Find Full Text PDFBackground: Dry mouth (xerostomia) is common and can have significant consequences for a patient's general and oral health. Multiple medications may compromise the flow and quality of saliva.
Objective: This study explored general practitioners' (GPs') perceptions, knowledge and management of dry mouth, and whether consideration of oral health influences prescribing patterns.
Background: Real-world studies of the emergency reversal of warfarin using 4-factor prothrombin complex concentrate (PCC) report unwarranted delays. The delay to receiving PCC was ≥ 8 h in 46·7% of patients with warfarin-associated bleeding (PWAB) treated with a variable PCC dosing protocol in our retrospective audit.
Objective: To report the impact of a simplified PCC dosing protocol on the interval to reversal of anticoagulation.
Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age.
View Article and Find Full Text PDFBackground: B-cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-non-Gal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen/xenoantibody interactions could prolong xenograft survival while preserving B-cell-mediated immune surveillance.
View Article and Find Full Text PDFThe ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs) from the most readily available source-peripheral blood-has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB) CD34(+) cells with improved oriP/EBNA1-based episomal vectors (EV) using a strong spleen focus forming virus (SFFV) long terminal repeat (LTR) promoter. Here we show that Yamanaka factors (OCT4, SOX2, MYC, and KLF4)-expressing EV can also reprogram adult peripheral blood mononuclear cells (PBMNCs) into pluripotency, yet at a very low efficiency.
View Article and Find Full Text PDFBackground: Laboratory large animal models are important for establishing the efficacy of stem cell therapies that may be translated into clinical use. The similarity of ovine and human cardiovascular systems provides an opportunity to use the sheep as a large animal model in which to optimize cell-based treatments for the heart. Recent clinical trials in humans using endogenous cardiovascular progenitor cells report significant improvement in cardiac function following stem cell-based therapy.
View Article and Find Full Text PDFClaudin-4 is an unusual member of the claudin family; in addition to its role in epithelial tight junction barrier function, it is a receptor for the Clostridium perfringens enterotoxin. We have also found that claudin-4 is regulated in mucosal epithelium M cells, both in increased expression of the protein and in redistribution into endocytosis vesicles. Our ongoing studies are studying the potential for developing ligands specific to claudin-4 for targeted delivery of cargo such as proteins and poly(DL-lactide-co-glycolide) nanoparticles to mucosal M cells.
View Article and Find Full Text PDFAssociation mapping currently relies on the identification of genetic markers. Several technologies have been adopted for genetic marker analysis, with single nucleotide polymorphisms (SNPs) being the most popular where a reasonable quantity of genome sequence data are available. We describe several tools we have developed for the discovery, annotation, and visualization of molecular markers for association mapping.
View Article and Find Full Text PDFMolecular markers are used to provide the link between genotype and phenotype, for the production of molecular genetic maps and to assess genetic diversity within and between related species. Single nucleotide polymorphisms (SNPs) are the most abundant molecular genetic marker. SNPs can be identified in silico, but care must be taken to ensure that the identified SNPs reflect true genetic variation and are not a result of errors associated with DNA sequencing.
View Article and Find Full Text PDFMolecular genetic markers represent one of the most powerful tools for the analysis of plant genomes and the association of heritable traits with underlying genetic variation. Molecular marker technology has developed rapidly over the last decade, with the development of high-throughput genotyping methods. Two forms of sequence-based marker, simple sequence repeats (SSRs), also known as microsatellites and single nucleotide polymorphisms (SNPs) now predominate applications in modern plant genetic analysis, along the anonymous marker systems such as amplified fragment length polymorphisms (AFLPs) and diversity array technology (DArT).
View Article and Find Full Text PDF