Publications by authors named "Apoorva Safai"

Purpose: AI algorithms have shown impressive performance in segmenting geographic atrophy (GA) from fundus autofluorescence (FAF) images. However, selection of artificial intelligence (AI) architecture is an important variable in model development. Here, we explore 12 distinct AI architecture combinations to determine the most effective approach for GA segmentation.

View Article and Find Full Text PDF

Objective: Neighborhood disadvantage is associated with worse health and cognitive outcomes. Morphological similarity network (MSN) is a promising approach to elucidate cortical network patterns underlying complex cognitive functions. We hypothesized that MSNs could capture intricate changes in cortical patterns related to neighborhood disadvantage and cognitive function, potentially explaining some of the risk for later life cognitive impairment among individuals who live in disadvantaged contexts.

View Article and Find Full Text PDF

Background: A multimodal connectomic analysis using diffusion and functional MRI can provide complementary information on the structure-function network dynamics involved in complex neurodegenerative network disorders such as Parkinson's disease (PD). Deep learning-based graph neural network models generate higher-level embeddings that could capture intricate structural and functional regional interactions related to PD.

Objective: This study aimed at investigating the role of structure-function connections in predicting PD, by employing an end-to-end graph attention network (GAT) on multimodal brain connectomes along with an interpretability framework.

View Article and Find Full Text PDF

Objective: Neurocognitive disabilities in Duchenne muscular dystrophy (DMD) children beginning in early childhood and distal DMD gene deletions involving disruption of Dp140 isoform are more likely to manifest significant neurocognitive impairments. MRI data analysis techniques like brain-network metrics can provide information on microstructural integrity and underlying pathophysiology.

Methods: A prospective study on 95 participants [DMD = 57, and healthy controls (HC) = 38].

View Article and Find Full Text PDF

To build a machine learning-based diagnostic model that can accurately distinguish adult supratentorial extraventricular ependymoma (STEE) from similarly appearing high-grade gliomas (HGG) using quantitative radiomic signatures from a multi-parametric MRI framework. We computed radiomic features on the preprocessed and segmented tumor masks from a pre-operative multimodal MRI dataset [contrast-enhanced T1 (T1ce), T2, fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient (ADC)] from STEE ( = 15), HGG-Grade IV (HGG-G4) ( = 24), and HGG-Grade III (HGG-G3) ( = 36) patients, followed by an optimum two-stage feature selection and multiclass classification. Performance of multiple classifiers were evaluated on both unimodal and multimodal feature sets and most discriminative radiomic features involved in classification of STEE from HGG subtypes were obtained.

View Article and Find Full Text PDF

Microstructural changes associated with degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) have been studied using Diffusion Tensor Imaging (DTI). However, these studies show inconsistent results, mainly due to methodological variations in delineation of SNc. To mitigate this, our work aims to construct a probabilistic atlas of SNc based on a 3D Neuromelanin Sensitive MRI (NMS-MRI) sequence and demonstrate its applicability to investigate microstructural changes on a large dataset of PD.

View Article and Find Full Text PDF