Hydrogel scaffolds encapsulating C2C12 mouse skeletal muscle cells have been engineered as in vitro constructs towards regenerative medicine therapies for the enhancement and inducement of functional skeletal muscle formation. Previous work has largely involved two-dimensional (2D) muscle strips, naturally occurring hydrogels and incomplete examination of the effects of the scaffold and/or biological functionalization on myogenic differentiation in a controllable manner. The goal of this study was to identify key properties in functionalized poly(ethylene glycol) (PEG)-maleimide (MAL) synthetic hydrogels that promote cell attachment, proliferation and differentiation for the formation of multinucleated myotubes and functional skeletal muscle tissue constructs.
View Article and Find Full Text PDFAcute myocardial infarction (MI) caused by ischemia and reperfusion (IR) is the most common cause of cardiac dysfunction due to local cell death and a temporally regulated inflammatory response. Current therapeutics are limited by delivery vehicles that do not address spatial and temporal aspects of healing. The aim of this study was to engineer biotherapeutic delivery materials to harness endogenous cell repair to enhance myocardial repair and function.
View Article and Find Full Text PDF