Background: Clinical decision support (CDS) tools that incorporate machine learning-derived content have the potential to transform clinical care by augmenting clinicians' expertise. To realize this potential, such tools must be designed to fit the dynamic work systems of the clinicians who use them. We propose the use of academic detailing-personal visits to clinicians by an expert in a specific health IT tool-as a method for both ensuring the correct understanding of that tool and its evidence base and identifying factors influencing the tool's implementation.
View Article and Find Full Text PDFBackground: Existing monitoring of machine-learning-based clinical decision support (ML-CDS) is focused predominantly on the ML outputs and accuracy thereof. Improving patient care requires not only accurate algorithms but also systems of care that enable the output of these algorithms to drive specific actions by care teams, necessitating expanding their monitoring.
Objectives: In this case report, we describe the creation of a dashboard that allows the intervention development team and operational stakeholders to govern and identify potential issues that may require corrective action by bridging the monitoring gap between model outputs and patient outcomes.
Background: Emergency department (ED) providers are important collaborators in preventing falls for older adults because they are often the first health care providers to see a patient after a fall and because at-home falls are often preceded by previous ED visits. Previous work has shown that ED referrals to falls interventions can reduce the risk of an at-home fall by 38%. Screening patients at risk for a fall can be time-consuming and difficult to implement in the ED setting.
View Article and Find Full Text PDFObjective: We assessed fidelity of delivery and participant engagement in the implementation of a community paramedic coach-led Care Transitions Intervention (CTI) program adapted for use following emergency department (ED) visits.
Methods: The adapted CTI for ED-to-home transitions was implemented at three university-affiliated hospitals in two cities from 2016 to 2019. Participants were aged ≥60 years old and discharged from the ED within 24 hours of arrival.
Of the 3 million older adults seeking fall-related emergency care each year, nearly one-third visited the Emergency Department (ED) in the previous 6 months. ED providers have a great opportunity to refer patients for fall prevention services at these initial visits, but lack feasible tools for identifying those at highest-risk. Existing fall screening tools have been poorly adopted due to ED staff/provider burden and lack of workflow integration.
View Article and Find Full Text PDFBackground: Falls among older adults are both a common reason for presentation to the emergency department, and a major source of morbidity and mortality. It is critical to identify fall patients quickly and reliably during, and immediately after, emergency department encounters in order to deliver appropriate care and referrals. Unfortunately, falls are difficult to identify without manual chart review, a time intensive process infeasible for many applications including surveillance and quality reporting.
View Article and Find Full Text PDF