Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions.
View Article and Find Full Text PDFAchieving electrostatic control of quantum phases is at the frontier of condensed matter research. Recent investigations have revealed superconductivity tunable by electrostatic doping in twisted graphene heterostructures and in two-dimensional semimetals such as WTe (refs. ).
View Article and Find Full Text PDFCrystalline two-dimensional (2D) superconductors (SCs) with low carrier density are an exciting new class of materials in which electrostatic gating can tune superconductivity, electronic interactions play a prominent role, and electrical transport properties may directly reflect the topology of the Fermi surface. Here, we report the dramatic enhancement of superconductivity with decreasing thickness in semimetallic -MoTe, with critical temperature () increasing up to 7.6 K for monolayers, a 60-fold increase with respect to the bulk .
View Article and Find Full Text PDFTwo-dimensional semiconductors, including transition metal dichalcogenides, are of interest in electronics and photonics but remain nonmagnetic in their intrinsic form. Previous efforts to form two-dimensional dilute magnetic semiconductors utilized extrinsic doping techniques or bulk crystal growth, detrimentally affecting uniformity, scalability, or Curie temperature. Here, we demonstrate an in situ substitutional doping of Fe atoms into MoS monolayers in the chemical vapor deposition growth.
View Article and Find Full Text PDFIn this work, we demonstrate a simple technique to grow high-quality whiskers of Bi Sr CaCu O - a high T superconductor. Structural analysis shows the single-crystalline nature of the grown whiskers. To probe electrical properties, we exfoliate these whiskers into thin flakes (~50 nm thick) using the scotch-tape technique and develop a process to realize good electrical contacts.
View Article and Find Full Text PDF