This paper shows the results of effective uses of a molecular cytogenetics toolbox and molecular marker to transfer leaf rust resistance genes from Aegilops tauschii × Secale cereale (DDRR, 2n = 4x = 28) amphiploid forms to triticale cv. Bogo (AABBRR, 2n = 6x = 42). The molecular markers of resistance genes and in situ hybridization analysis of mitotic metaphase of root meristems confirmed the stable inheritance of chromosome 3D segments carrying Lr32 from the BC2F2 to the BC2F5 generation of (Ae.
View Article and Find Full Text PDFAn improvement of rye is one of the mainstream goals of current breeding. Our study is concerned with the introduction of the tetraploid triticale (ABRR) into the 4x rye (RRRR) using classical methods of distant crossing. One hundred fifty BC1F9 hybrid plants [(4x rye × 4x triticales) × 4x rye] obtained from a backcrossing program were studied.
View Article and Find Full Text PDFThree sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution.
View Article and Find Full Text PDFChromosome identification using fluorescence in situ hybridization (FISH) is widely used in cytogenetic research. It is a diagnostic tool helpful in chromosome identification. It can also be used to characterize alien introgressions, when exercised in a combination with genomic in situ hybridization (GISH).
View Article and Find Full Text PDFThe aim of this study was to assess the potential breeding value of goatgrass-rye amphiploids, which we are using as a "bridge" in a transfer of Aegilops chromatin (containing, e.g. leaf rust resistance genes) into triticale.
View Article and Find Full Text PDFGenome modifications that occur at the initial interspecific hybridization event are dynamic and can be consolidated during the process of stabilization in successive generations of allopolyploids. This study identifies the number and chromosomal location of ribosomal DNA (rDNA) sites between Secale cereale, Dasypyrum villosum, and their allotetraploid S. cereale × D.
View Article and Find Full Text PDFThe valuable genes of Aegilops biuncialis, Ae. ovata, Ae. kotschyi, and Ae.
View Article and Find Full Text PDFChromosome pairing in tetraploid Secalotriticum was analysed. In the studied plants wheat chromosomes in PMCs during metaphase I showed a higher degree of pairing, in comparison to the rye genome. This is reflected in a very low frequency of univalents and a higher frequency of ring bivalents.
View Article and Find Full Text PDFIn tetraploid rye with single-substitution wheat chromosomes - 1A, 2A, 5A, 6A, 7A, 3B, 5B, 7B - chromosome pairing was analysed at metaphase I in PMCs with the C-banding method. The frequency of univalents of chromosome 1A was considerably higher than that of the other four wheat chromosomes of genome A (6A, 5A, 7A and 2A). Among chromosomes of genome B, the lowest mean frequency of univalents was observed for chromosome 5B.
View Article and Find Full Text PDFThe relative DNA content of individual chromosomes of Secale cereale L. was determined in 25 cells by microdensitometry of Feulgen stained preparations. The correlation value between relative DNA content and relative chromosome length was r=0.
View Article and Find Full Text PDFThe substitution patterns of rye chromosomes in hexaploid triticale × wheat F2 hybrids, along with the transmission patterns of rye chromosomes through egg cells and pollen when several of the F1 hybrids were test crossed to triticale and wheat were investigated. The data indicated that the rye chromosome transmission through both the egg and pollen was random in number and in composition. The test crosses suggested that it was best to use wheat pollen for the transmission of rye chromosomes through the egg cells of the F1 hybrids and triticale egg cells for the transmission of rye chromosomes through F1 hybrid pollen.
View Article and Find Full Text PDF