The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (V(T)) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-V(T) combination also protects the epithelium.
View Article and Find Full Text PDFVariable ventilation (VV), characterized by breath-to-breath variation of tidal volume (Vt) and breathing rate (f), has been shown to improve lung mechanics and blood oxygenation during acute lung injury in many species compared with conventional ventilation (CV), characterized by constant Vt and f. During CV as well as VV, the lungs of mice tend to collapse over time; therefore, the goal of this study was to develop a new VV mode (VV(N)) with an optimized distribution of Vt to maximize recruitment. Groups of normal and HCl-injured mice were subjected to 1 h of CV, original VV (VV(O)), CV with periodic large breaths (CV(LB)), and VV(N), and the effects of ventilation modes on respiratory mechanics, airway pressure, blood oxygenation, and IL-1beta were assessed.
View Article and Find Full Text PDFWe investigated the influence of load impedance on ventilator performance and the resulting effects of reduced tidal volume (Vt) on lung physiology during a 30-min ventilation of normal mice and 10 min of additional ventilation following lavage-induced injury at two positive end-expiratory pressure (PEEP) levels. Respiratory mechanics were regularly monitored, and the lavage fluid was tested for the soluble E-cadherin, an epithelial cell adhesion molecule, and surfactant protein (SP) B. The results showed that, due to the load dependence of the delivered Vt from the small-animal ventilator: 1) uncontrolled ventilation in normal mice resulted in a lower delivered Vt (6 ml/kg at 3-cmH(2)O PEEP and 7 ml/kg at 6-cmH(2)O PEEP) than the prescribed Vt (8 ml/kg); 2) at 3-cmH(2)O PEEP, uncontrolled ventilation in normal mice led to an increase in lung parenchymal functional heterogeneity, a reduction of SP-B, and an increase in E-cadherin; 3) at 6-cmH(2)O PEEP, ventilation mode had less influence on these parameters; and 4) in a lavage model of acute respiratory distress syndrome, delivered Vt decreased to 4 ml/kg from the prescribed 8 ml/kg, which resulted in severely compromised lung function characterized by increases in lung elastance, airway resistance, and alveolar tissue heterogeneity.
View Article and Find Full Text PDFBackground: Implantable cardioverter-defibrillators (ICDs) are effective for primary and secondary prevention of sudden cardiac death due to ventricular arrhythmias. However, despite wide clinical use, there are no generally accepted standardized protocols to characterize and report the output capabilities of ICDs.
Objective: The objective of this study was to measure and compare the output characteristics of standard-output and high-output ICDs from several manufacturers under a common set of conditions.