In this study, FeO-ZrO functionalized with 3-aminopropyltriethoxysilane (FeO-ZrO@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology.
View Article and Find Full Text PDFA magnetic multi-walled carbon nanotube/zeolite nanocomposite was applied for the adsorption and removal of arsenic ions in simulated and real acid mine drainage samples. The adsorption mechanism was investigated using two-parameter (Langmuir, Freundlich, Temkin) and three-parameter (Redlich-Peterson, and Sips) isotherm models. This was done in order to determine the characteristic parameters of the adsorptive removal process.
View Article and Find Full Text PDFIn this work, cobalt-methylimidazolate framework has been used as an adsorbent in the removal of Pb(II) from acid mine drainage in adsorption batch system. X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmet-Teller and transmission electron microscope were used for structural, morphological, and surface characteristics of cobalt-methylimidazolate framework. The concentration of heavy metal ions in water samples was measured by inductively coupled plasma optical emission spectrometry.
View Article and Find Full Text PDF