Darunavir, a frontline treatment for HIV infection, faces limitations due to emerging multidrug resistant (MDR) HIV strains, necessitating the development of analogs with improved activity. In this study, a combinatorial in silico approach was used to initially design a series of HIV-1 PI analogs with modifications at key sites, P1' and P2', to enhance interactions with HIV-1 PR. Fifteen analogs with promising binding scores were selected for synthesis and evaluated for the HIV-1 PR inhibition activity.
View Article and Find Full Text PDFBackground: Anti-SARS-CoV-2 and immunomodulatory drugs are important for treating clinically severe patients with respiratory distress symptoms. Alpha- and gamma-mangostins (AM and GM) were previously reported as potential 3C-like protease (3CL) and Angiotensin-converting enzyme receptor 2 (ACE2)-binding inhibitors .
Objective: We aimed to evaluate two active compounds, AM and GM, from for their antivirals against SARS-CoV-2 in live virus culture systems and their cytotoxicities using standard methods.
Dengue infection is a global health problem as climate change facilitates the spread of mosquito vectors. Infected patients could progress to severe plasma leakage and hemorrhagic shock, where current standard treatment remains supportive. Previous reports suggested that several flavonoid derivatives inhibited mosquito-borne flaviviruses.
View Article and Find Full Text PDFThirty-five 9-O-berberrubine carboxylate derivatives were synthesized and evaluated for yeast α-glucosidase inhibitory activity. All compounds demonstrated better inhibitory activities than the parent compounds berberine (BBR) and berberrubine (BBRB), and a positive control, acarbose. The structure-activity correlation study indicated that most of the substituents on the benzoate moiety such as methoxy, hydroxy, methylenedioxy, benzyloxy, halogen, trifluoromethyl, nitro and alkyl can contribute to the activities except multi-methoxy, fluoro and cyano.
View Article and Find Full Text PDF3CL is a viable target for developing antiviral therapies against the coronavirus. With the urgent need to find new possible inhibitors, a structure-based virtual screening approach was developed. This study recognized 75 pharmacologically bioactive compounds from our in-house library of 1052 natural product-based compounds that satisfied drug-likeness criteria and exhibited good bioavailability and membrane permeability.
View Article and Find Full Text PDFParallel cascade selection molecular dynamics-based ligand binding-path sampling (LB-PaCS-MD) was combined with fragment molecular orbital (FMO) calculations to reveal the ligand path from an aqueous solution to the SARS-CoV-2 main protease (M) active site and to customise a ligand-binding pocket suitable for delivering a potent inhibitor. Rubraxanthone exhibited mixed-inhibition antiviral activity against SARS-CoV-2 M, relatively low cytotoxicity, and high cellular inhibition. However, the atomic inhibition mechanism remains ambiguous.
View Article and Find Full Text PDFMolecules
April 2022
, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, -aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine () to yield piperic acid () followed by esterification to obtain compounds , , and . The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities.
View Article and Find Full Text PDFBackground: Asparaginase is one of the essential chemotherapies used to treat acute lymphoblastic leukemia (ALL). Asparaginase antibody production may cause a subtherapeutic level and result in an inferior outcome. The aim of this study was to prove the efficacy of current native E.
View Article and Find Full Text PDFDengue virus causes a global burden that specific chemotherapy has not been established. A previous report suggested that anacardic acid inhibited hepatitis C virus infection. Here, we explored structure activity relationship of anacardic acid, cardanol, and cardol homologues with anti-DENV cellular infectivities.
View Article and Find Full Text PDFDengue infection is a global burden affecting millions of world population. Previous studies indicated that flavanones were potential dengue virus inhibitors. We discovered that a novel flavanone derivative, 5-hydroxy-7-methoxy-6-methylflavanone (FN5Y), inhibited DENV2 pH-dependent fusion in cell-based system with strong binding efficiency to DENV envelope protein at K (P83, L107, K128, L198), K' (T48, E49, A50, L198, Q200, L277), X' (Y138, V354, I357), and Y' (V97, R99, N103, K246) by molecular dynamic simulation.
View Article and Find Full Text PDFDengue virus infection is a global threat for which no specific treatment has not been established. Previous reports suggested chrysin and flavanone derivatives were potential flaviviral inhibitors. Here, we reported two halogenated chrysins, abbreviated FV13 and FV14, were highly potent against DENV1-4 and ZIKV infectivities with the FV13 EC values of 2.
View Article and Find Full Text PDFThe plaque assay is essential for virion quantitation but the classic protocol requires considerable efforts. A simplified dengue 96-well plaque assay with automated quantitation program is an alternative to access the level of infectious virus. Dengue plaque assay was simplified using LLC/MK2 cells and virus mixing simultaneously before semisolid addition.
View Article and Find Full Text PDF