Publications by authors named "Apel E"

Article Synopsis
  • Wildfires are a growing contributor to air pollution, particularly due to reactive organic compounds (ROC), which have varying health impacts based on their toxicity and abundance.
  • A study combining field campaign data and air quality modeling found that current emissions estimates capture only 40-45% of the total ROC released from wildfires.
  • The research indicates that particulate ROC could significantly affect health risks from smoke exposure, highlighting the need for more accurate toxicity data on these compounds.
View Article and Find Full Text PDF

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon.

View Article and Find Full Text PDF

External cycling regenerating nitrogen oxides (NO ≡ NO + NO) from their oxidative reservoir, NO, is proposed to reshape the temporal-spatial distribution of NO and consequently hydroxyl radical (OH), the most important oxidant in the atmosphere. Here we verify the in situ external cycling of NO in various environments with nitrous acid (HONO) as an intermediate based on synthesized field evidence collected onboard aircraft platform at daytime. External cycling helps to reconcile stubborn underestimation on observed ratios of HONO/NO and NO/NO by current chemical model schemes and rationalize atypical diurnal concentration profiles of HONO and NO lacking noontime valleys specially observed in low-NO atmospheres.

View Article and Find Full Text PDF

Pyrocumulonimbus (pyroCb) are wildfire-generated convective clouds that can inject smoke directly into the stratosphere. PyroCb have been tracked for years, yet their apparent rarity and episodic nature lead to highly uncertain climate impacts. In situ measurements of pyroCb smoke reveal its distinctive and exceptionally stable aerosol properties and define the long-term influence of pyroCb activity on the stratospheric aerosol budget.

View Article and Find Full Text PDF

A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM-chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM-chem-SE. Horizontal mesh refinement in CESM/CAM-chem-SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM-chem-SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0).

View Article and Find Full Text PDF

CH is the most abundant reactive greenhouse gas and a complete understanding of its atmospheric fate is needed to formulate mitigation policies. Current chemistry-climate models tend to underestimate the lifetime of CH, suggesting uncertainties in its sources and sinks. Reactive halogens substantially perturb the budget of tropospheric OH, the main CH loss.

View Article and Find Full Text PDF

Iodine is an atmospheric trace element emitted from oceans that efficiently destroys ozone (O). Low O in airborne dust layers is frequently observed but poorly understood. We show that dust is a source of gas-phase iodine, indicated by aircraft observations of iodine monoxide (IO) radicals inside lofted dust layers from the Atacama and Sechura Deserts that are up to a factor of 10 enhanced over background.

View Article and Find Full Text PDF

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors.

View Article and Find Full Text PDF

Wildland firefighters are exposed to smoke-containing particulate matter (PM) and volatile organic compounds (VOCs) while suppressing wildfires. From 2015 to 2017, the U.S.

View Article and Find Full Text PDF

Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow.

View Article and Find Full Text PDF

A new airborne system, the Whole Air Sampling Pilotless Platform (WASPP), is described for the collection of whole air samples and in situ meteorological measurements onboard a commercial hexacopter. Rapid sample collection enables the collection ≤15 air samples per flight in positively pressurized miniature canisters, subsequently analyzed on a mated analytical system for up to 80 nonmethane volatile organic compounds (VOCs). The WASPP is well suited to investigate VOC gradients in urban environments impacted by traffic, industry, and oil and natural gas (O&NG) development, but has the sensitivity to characterize continental background conditions, as shown here using a subset of >40 species.

View Article and Find Full Text PDF
Article Synopsis
  • The global oxidation capacity, measured by hydroxyl radicals (OH), affects the lifespan of gases like methane and carbon monoxide, with models generally underestimating their lifetimes due to excessive OH levels.
  • Observations from NASA's ATom campaign provide insights into remote ocean oxidation capacity, showing that the GEOS-Chem model accurately reflects remote OH profiles but struggles with seasonal NO estimates.
  • The study reveals an unexplained enhancement of OH reactivity below 3 km during ATom-1, indicating potential missing reactive VOCs that existing models fail to account for.
View Article and Find Full Text PDF

Wildfires have a significant adverse impact on air quality in the United States (US). To understand the potential health impacts of wildfire smoke, many epidemiology studies rely on concentrations of fine particulate matter (PM) as a smoke tracer. However, there are many gas-phase hazardous air pollutants (HAPs) identified by the Environmental Protection Agency (EPA) that are also present in wildfire smoke plumes.

View Article and Find Full Text PDF

Inland sources of particulate chloride for atmospheric nitryl chloride (ClNO) formation remain unknown and unquantified, hindering air quality assessments. Globally each winter, tens of millions of tons of road salt are spread on roadways for deicing. Here, we identify road salt aerosol as the primary chloride aerosol source, accounting for 80-100% of ClNO formation, at an inland urban area in the wintertime.

View Article and Find Full Text PDF

Wildfires are an important source of nitrous acid (HONO), a photolabile radical precursor, yet in situ measurements and quantification of primary HONO emissions from open wildfires have been scarce. We present airborne observations of HONO within wildfire plumes sampled during the Western Wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) campaign. ΔHONO/ΔCO close to the fire locations ranged from 0.

View Article and Find Full Text PDF

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCHSCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur.

View Article and Find Full Text PDF

We apply a high-resolution chemical transport model (GEOS-Chem CTM) with updated treatment of volatile organic compounds (VOCs) and a comprehensive suite of airborne datasets over North America to (i) characterize the VOC budget and (ii) test the ability of current models to capture the distribution and reactivity of atmospheric VOCs over this region. Biogenic emissions dominate the North American VOC budget in the model, accounting for 70 % and 95 % of annually emitted VOC carbon and reactivity, respectively. Based on current inventories anthropogenic emissions have declined to the point where biogenic emissions are the dominant summertime source of VOC reactivity even in most major North American cities.

View Article and Find Full Text PDF

We report airborne measurements of acetaldehyde (CHCHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CHCHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CHCHO is estimated to be 34 Tg a (42 Tg a if considering bubble-mediated transfer), and the ocean impacts on tropospheric CHCHO are mostly confined to the marine boundary layer.

View Article and Find Full Text PDF

Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HO. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models.

View Article and Find Full Text PDF

We describe a submicron aerosol particle sampled at an altitude of 7 km near the Aleutian Islands that contained a small percentage of enriched uranium oxide. U was 3.1 ± 0.

View Article and Find Full Text PDF

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014.

View Article and Find Full Text PDF

Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed.

View Article and Find Full Text PDF

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background.

View Article and Find Full Text PDF

Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes.

View Article and Find Full Text PDF