Publications by authors named "Apeksha Koul"

Introduction: The rapid advancement of science and technology has significantly expanded the capabilities of artificial intelligence, enhancing diagnostic accuracy for gastric cancer.

Methods: This research aims to utilize endoscopic images to identify various gastric disorders using an advanced Convolutional Neural Network (CNN) model. The Kvasir dataset, comprising images of normal Z-line, normal pylorus, ulcerative colitis, stool, and polyps, was used.

View Article and Find Full Text PDF

Identifying and recognizing the food on the basis of its eating sounds is a challenging task, as it plays an important role in avoiding allergic foods, providing dietary preferences to people who are restricted to a particular diet, showcasing its cultural significance, etc. In this research paper, the aim is to design a novel methodology that helps to identify food items by analyzing their eating sounds using various deep learning models. To achieve this objective, a system has been proposed that extracts meaningful features from food-eating sounds with the help of signal processing techniques and deep learning models for classifying them into their respective food classes.

View Article and Find Full Text PDF

In the paper, the authors investigated and predicted the future environmental circumstances of a COVID-19 to minimize its effects using artificial intelligence techniques. The experimental investigation of COVID-19 instances has been performed in ten countries, including India, the United States, Russia, Argentina, Brazil, Colombia, Italy, Turkey, Germany, and France using machine learning, deep learning, and time series models. The confirmed, deceased, and recovered datasets from January 22, 2020, to May 29, 2021, of Novel COVID-19 cases were considered from the Kaggle COVID dataset repository.

View Article and Find Full Text PDF

There is a need for some techniques to solve various problems in today's computing world. Metaheuristic algorithms are one of the techniques which are capable of providing practical solutions to such issues. Due to their efficiency, metaheuristic algorithms are now used in healthcare data to diagnose diseases practically and with better results than traditional methods.

View Article and Find Full Text PDF

Airway disease is a major healthcare issue that causes at least 3 million fatalities every year. It is also considered one of the foremost causes of death all around the globe by 2030. Numerous studies have been undertaken to demonstrate the latest advances in artificial intelligence algorithms to assist in identifying and classifying these diseases.

View Article and Find Full Text PDF

Artificial intelligence can assist providers in a variety of patient care and intelligent health systems. Artificial intelligence techniques ranging from machine learning to deep learning are prevalent in healthcare for disease diagnosis, drug discovery, and patient risk identification. Numerous medical data sources are required to perfectly diagnose diseases using artificial intelligence techniques, such as ultrasound, magnetic resonance imaging, mammography, genomics, computed tomography scan, etc.

View Article and Find Full Text PDF