With advancements in artificial intelligence (AI) dominating the headlines, diagnostic imaging radiology is no exception to the accelerating role that AI is playing in today's technology landscape. The number of AI-driven radiology diagnostic imaging applications (digital diagnostics) that are both commercially available and in-development is rapidly expanding as are the potential benefits these tools can deliver for patients and providers alike. Healthcare providers seeking to harness the potential benefits of digital diagnostics may consider evaluating these tools and their corresponding use cases in a systematic and structured manner to ensure optimal capital deployment, resource utilization, and, ultimately, patient outcomes-or clinical utility.
View Article and Find Full Text PDFBackground: Mesenchymal stromal cells (MSCs) are an attractive therapeutic agent in regenerative medicine. Recently, there has been a paradigm shift from differentiation of MSCs to their paracrine effects at the injury site. Several reports elucidate the role of trophic factors secreted by MSCs toward the repair of injured tissues.
View Article and Find Full Text PDFRecent progress in the use of decellularized organ scaffolds as regenerative matrices for tissue engineering holds great promise in addressing the issue of donor organ shortage. Decellularization preserves the mechanical integrity, composition, and microvasculature critical for zonation of hepatocytes in the liver. Earlier studies have reported the possibility of repopulating decellularized matrices with hepatic cell lines or stem cells to improve liver regeneration.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2018
Acute liver failure (ALF) plasma has cytotoxic effects on the cell-loaded bioreactor in bioartificial liver support systems due to the presence of innumerable hepatotoxic compounds that adversely affect the morphology and functionality of the cells. We have designed a hybrid bioreactor that integrates a hepatic cell-loaded cryogel disc and an activated carbon cloth in one compact unit, with potential application as a bioartificial liver support. In this article, we assess the performance of this integrated hybrid cryogel-based bioreactor in a perfusion-based culture system and analyze its functionality and longevity in the presence of intermittent exposure to ALF plasma.
View Article and Find Full Text PDFConventionally, some bioartificial liver devices are used with separate plasmapheresis unit to separate out plasma from whole blood and adsorbent column to detoxify plasma before it passes through a hepatocytes-laden bioreactor. We aim to develop a hybrid bioreactor that integrates the separate modules in one compact design improving the efficacy of the cryogel based bioreactor as a bioartificial liver support. A plasma separation membrane and an activated carbon cloth are placed over a HepG2-loaded cryogel scaffold in a three-chambered bioreactor design.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
Colloids Surf B Biointerfaces
December 2015
Two different cryogels composed of copolymer of acrylonitrile (AN) and N-vinyl-2-pyrrolidone (NVP) (poly(AN-co-NVP)) and interpenetrated polymer networks (IPN) of chitosan and poly(N-isopropylacrylamide) (poly(NiPAAm)-chitosan) were fabricated by gelation at sub-zero temperatures. The two cryogels possess an interconnected network of macropores of size 20-100 μm and efficient transport properties as determined by physiochemical analysis. Both cryogels support in vitro growth and function of fibroblasts (COS-7) and human liver hepatocarcinoma cells (HepG2).
View Article and Find Full Text PDFLiver extracellular matrix (ECM) composition, topography and biomechanical properties influence cell-matrix interactions. The ECM presents guiding cues for hepatocyte phenotype maintenance, differentiation and proliferation both in vitro and in vivo. Current understanding of such cell-guiding cues along with advancement of techniques for scaffold fabrication has led to evolution of matrices for liver tissue culture from simple porous scaffolds to more complex 3D matrices with microarchitecture similar to in vivo.
View Article and Find Full Text PDFThe liver is one of the most complex organs in the body, performing a multitude of functions. Liver tissue engineering is a combination of various strategies that aim at generating functional liver tissue that can help restore and/or support the ailing liver as it recuperates. Conventionally, in vitro culture has involved growing cells in different media compositions or layering them on matrices largely composed of native ECM components such as collagen or Matrigel.
View Article and Find Full Text PDF