The imidazole alkaloid lepidiline A from the root of has a moderate to low in vitro anticancer effect. Our aim was to extend cytotoxicity investigations against a panel of cancer cells, including multidrug-resistant cancer cells, and multipotent stem cells. Lepidiline A is a N-heterocyclic carbene precursor, therefore a suitable ligand source for metal complexes.
View Article and Find Full Text PDFBackground: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs).
Methods: Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone).
Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters, such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder.
View Article and Find Full Text PDFBackground: Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing.
View Article and Find Full Text PDFCreatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the SLC6A8 gene. The impaired creatine uptake in the brain results in intellectual disability, behavioral disorders, language delay, and seizures. In this work, we generated human brain organoids from induced pluripotent stem cells of healthy subjects and CTD patients.
View Article and Find Full Text PDFHuman induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) hold tremendous potential for cardiovascular disease modeling, drug screening, personalized medicine, and pathophysiology studies. The availability of a robust protocol and functional assay for studying phenotypic behavior of hiPSC-CMs is essential for establishing an in vitro disease model. Many heart diseases manifest due to changes in the mechanical strain of cardiac tissue.
View Article and Find Full Text PDFIn human cells two dUTPase isoforms have been described: one nuclear (DUT-N) and one mitochondrial (DUT-M), with cognate localization signals. In contrast, here we identified two additional isoforms; DUT-3 without any localization signal and DUT-4 with the same nuclear localization signal as DUT-N. Based on an RT-qPCR method for simultaneous isoform-specific quantification we analysed the relative expression patterns in 20 human cell lines of highly different origins.
View Article and Find Full Text PDFMaturation of microRNAs (miRNAs) begins by the "Microprocessor" complex, containing the Drosha endonuclease and its partner protein, "DiGeorge Syndrome Critical Region 8" (DGCR8). Although the main function of the two proteins is to coordinate the first step of precursor miRNAs formation, several studies revealed their miRNA-independent functions in other RNA-related pathways (e.g.
View Article and Find Full Text PDFMicroglia, the primary immune cells of the brain, significantly influence the fate of neurons after neural damage. Depending on the local environment, they exhibit a wide range of phenotypes, including patrolling (naïve), proinflammatory, and anti-inflammatory characteristics, which greatly affects neurotoxicity. Despite the fact that neural progenitor cells (NPCs) and hippocampal neurons represent cell populations, which play pivotal role in neural regeneration, interaction between microglia and these cell types is poorly studied.
View Article and Find Full Text PDFTyrosine kinase substrate with four SH3 domains (Tks4) scaffold protein plays roles in cell migration and podosome formation and regulates systemic mechanisms such as adult bone homeostasis and adipogenesis. Mutations in the Tks4 gene () cause a rare developmental disorder called Frank-Ter Haar syndrome (FTHS), which leads to heart abnormalities, bone tissue defects, and reduced adiposity. We aimed to produce a human stem cell-based in vitro FTHS model system to study the effects of the loss of the Tks4 protein in different cell lineages and the accompanying effects on the cell signalome.
View Article and Find Full Text PDFTransposable elements are widespread in all living organisms. In addition to self-reproduction, they are a major source of genetic variation that drives genome evolution but our knowledge of the functions of human genes derived from transposases is limited. There are examples of transposon-derived, domesticated human genes that lost (SETMAR) or retained (THAP9) their transposase activity, however, several remnants in the human genome have not been thoroughly investigated yet.
View Article and Find Full Text PDFAims: Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating apoptosis, cell proliferation, and stem cell self-renewal. Recently, the pathway has been shown to exert powerful growth regulatory activity in cardiomyocytes. However, the functional role of this stress-related and cell death-related pathway in the human heart and cardiomyocytes is not known.
View Article and Find Full Text PDFStudies on neural development and neuronal regeneration after injury are mainly based on animal models. The establishment of pluripotent stem cell (PSC) technology, however, opened new perspectives for better understanding these processes in human models by providing unlimited cell source for hard-to-obtain human tissues. Here, we aimed at identifying the molecular factors that confine and modulate an early step of neural regeneration, the formation of neurites in human neural progenitor cells (NPCs).
View Article and Find Full Text PDFReverse transcription-quantitative real-time PCR (RT-qPCR) is a ubiquitously used method in biological research, however, finding appropriate reference genes for normalization is challenging. We aimed to identify genes characterized with low expression variability among human cancer and normal cell lines. For this purpose, we investigated the expression of 12 candidate reference genes in 13 widely used human cancer cell lines (HeLa, MCF-7, A-549, K-562, HL-60(TB), HT-29, MDA-MB-231, HCT 116, U-937, SH-SY5Y, U-251MG, MOLT-4 and RPMI-8226) and, in addition, 7 normal cell lines (HEK293, MRC-5, HUVEC/TERT2, HMEC, HFF-1, HUES 9, XCL-1).
View Article and Find Full Text PDFHuman pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) hold great promise for cardiovascular disease modeling, drug screening and personalized medicine. A crucial requirement to establish an hPSC-CM-based disease model is the availability of a reliable differentiation protocol and a functional assessment of phenotypic properties of CMs in a disease context. Characterization of relative changes in contractile behavior of CMs can provide insight not only about drug effects but into the pathogenesis of cardiovascular diseases.
View Article and Find Full Text PDFMesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) . Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the differentiation of human monocytes into DCs were investigated.
View Article and Find Full Text PDFHuman neuronal cell cultures are essential tools for biological and preclinical studies of our nervous system. Since we have very limited access to primary human neural samples, derivation of proliferative neural progenitor cells (NPCs) from cells harvested by minimally invasive sampling is a key issue. Here we describe a "shortcut" method to establish proliferative NPC cultures directly from peripheral blood mononuclear cells (PBMCs) via interrupted reprogramming.
View Article and Find Full Text PDFHere we describe the generation of induced pluripotent stem cell lines from each member - male proband, mother, father - of a schizophrenia case-parent trio that participated in an exome sequencing study, and 3 de novo mutations were identified in the proband. Peripheral blood mononuclear cells were obtained from all three individuals and reprogrammed using Sendai virus particles carrying the Yamanaka transgenes. These 3 iPSC lines (iPSC-SZ-HU-MO 1, iPSC-SZ-HU-FA 1, and iPSC-SZ-HU-PROB 1) represent a resource for examining the functional significance of the identified de novo mutations in the molecular pathophysiology of schizophrenia.
View Article and Find Full Text PDFDiGeorge Syndrome (DGS) Critical Region 8 (DGCR8) is a primary candidate gene in they DGS. The DGCR8 microprocessor complex subunit is an essential cofactor in the canonical miRNA biogenesis which is involved in diverse cellular functions such as cell fate decisions, apoptosis and different signaling pathways. However, the role of DGCR8 in these processes or development of DGS is not fully understood.
View Article and Find Full Text PDFInduced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) are promising tools to model complex neurological or psychiatric diseases, including schizophrenia. Multiple studies have compared patient-derived and healthy control NPCs derived from iPSCs in order to investigate cellular phenotypes of this disease, although the establishment, stabilization, and directed differentiation of iPSC lines are rather expensive and time-demanding. However, interrupted reprogramming by omitting the stabilization of iPSCs may allow for the generation of a plastic stage of the cells and thus provide a shortcut to derive NPSCs directly from tissue samples.
View Article and Find Full Text PDFBackground: De novo mutations (DNMs) have been implicated in the etiology of schizophrenia (SZ), a chronic debilitating psychiatric disorder characterized by hallucinations, delusions, cognitive dysfunction, and decreased community functioning. Several DNMs have been identified by examining SZ cases and their unaffected parents; however, in most cases, the biological significance of these mutations remains elusive. To overcome this limitation, we have developed an approach of using induced pluripotent stem cell (iPSC) lines from each member of a SZ case-parent trio, in order to investigate the effects of DNMs in cellular progenies of interest, particularly in dentate gyrus neuronal progenitors.
View Article and Find Full Text PDFHere we describe the generation of induced pluripotent stem cell (iPSC) lines from peripheral blood samples of identical twin sisters with type 2 diabetes mellitus (DM2). Two clonal lines from each patient (HU-DM2-A-1, HU-DM2-A-2 and HU-DM2-B-1, HU-DM2-B-2) were established via Sendai viral reprograming of peripheral blood mononuclear cells, and characterized to confirm pluripotency and genetic integrity. The established iPSC lines can help to investigate DM2 related cellular phenotypes and provide a model system for drug testing.
View Article and Find Full Text PDFOne of the longest human microRNA (miRNA) clusters is located on chromosome 19 (C19MC), containing 46 miRNA genes, which were considered to be expressed simultaneously and at similar levels from a common long noncoding transcript. Investigating the two tissue types where C19MC is exclusively expressed, we could show that there is a tissue-specific and chromosomal position-dependent decrease in mature miRNA levels towards the 3' end of the cluster in embryonic stem cells but not in placenta. Although C19MC transcription level is significantly lower in stem cells, this gradual decrease is not present at the primary miRNA levels, indicating that a difference in posttranscriptional processing could explain this observation.
View Article and Find Full Text PDFExpression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions.
View Article and Find Full Text PDF