Publications by authors named "Aparna Suvrathan"

The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear.

View Article and Find Full Text PDF

The amygdala nuclei modulate distributed neural circuits that most likely evolved to respond to environmental threats and opportunities. So far, the specific role of unique amygdala nuclei in the context processing of salient environmental cues lacks adequate characterization across neural systems and over time. Here, we present amygdala nuclei morphometry and behavioral findings from longitudinal population data (>1400 subjects, age range 40-69 years, sampled 2-3 years apart): the UK Biobank offers exceptionally rich phenotyping along with brain morphology scans.

View Article and Find Full Text PDF

Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1.

View Article and Find Full Text PDF

Climbing fiber-driven long-term depression (LTD) of parallel fiber synapses onto cerebellar Purkinje cells has long been investigated as a putative mechanism of motor learning. We recently discovered that the rules governing the induction of LTD at these synapses vary across different regions of the cerebellum. Here, we discuss the design of LTD induction protocols in light of this heterogeneity in plasticity rules.

View Article and Find Full Text PDF

Synaptic plasticity, induced by the close temporal association of two neural signals, supports associative forms of learning. However, the millisecond timescales for association often do not match the much longer delays for behaviorally relevant signals that supervise learning. In particular, information about the behavioral outcome of neural activity can be delayed, leading to a problem of temporal credit assignment.

View Article and Find Full Text PDF

It is widely assumed that the complexity of neural circuits enables them to implement diverse learning tasks using just a few generic forms of synaptic plasticity. In contrast, we report that synaptic plasticity can itself be precisely tuned to the requirements of a learning task. We found that the rules for induction of long-term and single-trial plasticity at parallel fiber-to-Purkinje cell synapses vary across cerebellar regions.

View Article and Find Full Text PDF

The fact that exposure to severe stress leads to the development of psychiatric disorders serves as the basic rationale for animal models of stress disorders. Clinical and neuroimaging studies have shown that three brain areas involved in learning and memory--the hippocampus, amygdala and prefrontal cortex--undergo distinct structural and functional changes in individuals with stress disorders. These findings from patient studies pose several challenges for animal models of stress disorders.

View Article and Find Full Text PDF

Prolonged and severe stress leads to cognitive deficits, but facilitates emotional behaviour. Little is known about the synaptic basis for this contrast. Here, we report that in rats subjected to chronic immobilization stress, long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated synaptic responses are enhanced in principal neurons of the lateral amygdala, a brain area involved in fear memory formation.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most commonly inherited form of mental impairment and autism. Current understanding of the molecular and cellular mechanisms underlying FXS symptoms is derived mainly from studies on the hippocampus and cortex. However, FXS is also associated with strong emotional symptoms, which are likely to involve changes in the amygdala.

View Article and Find Full Text PDF

Stress and depression may share common neural plasticity mechanisms. Importantly, the development and reversal of stress-induced plasticity requires time. These temporal aspects, however, are not captured fully in the forced-swim test (FST), a behavioural model for testing antidepressant efficacy, used originally in naïve animals.

View Article and Find Full Text PDF

Fragile X syndrome (FXS), a common inherited form of mental impairment and autism, is caused by transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. Earlier studies have identified a role for aberrant synaptic plasticity mediated by the metabotropic glutamate receptors (mGluRs) in FXS. However, many of these observations are derived primarily from studies in the hippocampus.

View Article and Find Full Text PDF