The low-frequency resistance fluctuations, or noise, in electrical resistance not only set a performance benchmark in devices but also form a sensitive tool to probe nontrivial electronic phases and band structures in solids. Here, we report the measurement of such noise in the electrical resistance in twisted bilayer graphene (tBLG), where the layers are misoriented close to the magic angle (θ ∼ 1°). At high temperatures ( ≳ 60-70 K), the power spectral density (PSD) of the fluctuation inside the low-energy moiré bands is predominantly ∝1/, where is the frequency, being generally lowest close to the magic angle, and can be well-explained within the conventional McWhorter model of the '1/ noise' with trap-assisted density-mobility fluctuations.
View Article and Find Full Text PDFThe ability to tune the twist angle between different layers of two-dimensional (2D) materials has enabled the creation of electronic flat bands artificially, leading to exotic quantum phases. When a twisted blilayer of graphene (tBLG) is placed at the van der Waals proximity to a semiconducting layer of transition metal dichalcogenide (TMDC), such as WSe, the emergent phases in the tBLG can fundamentally modify the functionality of such heterostructures. Here we have performed photoresponse measurements in few-layer-WSe/tBLG heterostructure, where the mis-orientation angle of the tBLG layer was chosen to lie close to the magic angle of 1.
View Article and Find Full Text PDFBinary van der Waals heterostructures of graphene (Gr) and transition metal dichalcogenide (TMDC) have evolved as a promising candidate for photodetection with very high responsivity due to the separation of photo-excited electron-hole pairs across the interface. The spectral range of optoelectronic response in such hybrids has so far been limited by the optical bandgap of the light absorbing TMDC layer. Here, the bidirectionality of interlayer charge transfer is utilized for detecting sub-band gap photons in Gr-TMDC heterostructures.
View Article and Find Full Text PDF