Publications by authors named "Aparna Nandakumar"

Understanding nanoparticle-cell interaction is essential for advancing research in nanomedicine and nanotoxicology. Apart from the transcytotic pathway mediated by cellular recognition and energetics, nanoparticles (including nanomedicines) may harness the paracellular route for their transport by inducing endothelial leakiness at cadherin junctions. This phenomenon, termed as NanoEL, is correlated with the physicochemical properties of the nanoparticles in close association with cellular signalling, membrane mechanics, as well as cytoskeletal remodelling.

View Article and Find Full Text PDF

The aggregation of amyloid beta (Aβ) is a hallmark of Alzheimer's disease (AD), a major cause of dementia and an unmet challenge in modern medicine. In this study, we constructed a biocompatible metal-phenolic network (MPN) comprising a polyphenol epigallocatechin gallate (EGCG) scaffold coordinated by physiological Zn(II). Upon adsorption onto gold nanoparticles, the MPN@AuNP nanoconstruct elicited a remarkable potency against the amyloid aggregation and toxicity of Aβ in vitro.

View Article and Find Full Text PDF

Much has been learned about the protein coronae and their biological implications within the context of nanomedicine and nanotoxicology. However, no data is available about the protein coronae associated with nanoparticles undergoing spontaneous surface-energy minimization, a common phenomenon during the synthesis and shelf life of nanomaterials. Accordingly, here we employed gold nanoparticles (AuNPs) possessing the three initial states of spiky, midspiky, and spherical shapes and determined their acquisition of human plasma protein coronae with label-free mass spectrometry.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aβ). A small peptide of considerable hydrophobicity, Aβ is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aβ-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aβ, and its inhibitor.

View Article and Find Full Text PDF

Soluble low-molecular-weight oligomers formed during the early aggregation of amyloid peptides have been hypothesized as a major toxic species of amyloidogenesis. Herein, we performed the first synergic , and validations of the structure, dynamics and toxicity of Aβ42 oligomers. Aβ peptides readily assembled into β-rich oligomers comprised of extended β-hairpins and β-strands.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a major neurological disorder impairing its carrier's cognitive function, memory and lifespan. While the development of AD nanomedicine is still nascent, the field is evolving into a new scientific frontier driven by the diverse physicochemical properties and theranostic potential of nanomaterials and nanocomposites. Characteristic to the AD pathology is the deposition of amyloid plaques and tangles of amyloid beta (Aβ) and tau, whose aggregation kinetics may be curbed by nanoparticle inhibitors via sequence-specific targeting or nonspecific interactions with the amyloidogenic proteins.

View Article and Find Full Text PDF

Increasing experiments suggest that amyloid peptides can undergo liquid-liquid phase separation (LLPS) before the formation of amyloid fibrils. However, the exact role of LLPS in amyloid aggregation at the molecular level remains elusive. Here, we investigated the LLPS and amyloid fibrillization of a coarse-grained peptide, capable of capturing fundamental properties of amyloid aggregation over a wide range of concentrations in molecular dynamics simulations.

View Article and Find Full Text PDF

Minimizing the interaction of nanomedicines with the mononuclear phagocytic system (MPS) is a critical challenge for their clinical translation. Conjugating polyethylene glycol (PEG) to nanomedicines is regarded as an effective approach to reducing the sequestration of nanomedicines by the MPS. However, recent concerns about the immunogenicity of PEG highlight the demand of alternative low-fouling polymers as innovative coating materials for nanoparticles.

View Article and Find Full Text PDF

Amyloid diseases are global epidemics with no cure currently available. In the past decade, the use of engineered nanomaterials as inhibitors or probes against the pathogenic aggregation of amyloid peptides and proteins has emerged as a new frontier in nanomedicine. In this Minireview, we summarize for the first time the pivotal role of chemical synthesis in enabling the development of this multidisciplinary field.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most severe form of neurological disorder, characterized by the presence of extracellular amyloid-β (Aβ) plaques and intracellular tau tangles. For decades, therapeutic strategies against the pathological symptoms of AD have often relied on the delivery of monoclonal antibodies to target specifically Aβ amyloid or oligomers, largely to no avail. Aβ can be traced in the brain as well as in cerebrospinal fluid and the circulation, giving rise to abundant opportunities to interact with their environmental proteins.

View Article and Find Full Text PDF

The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide.

View Article and Find Full Text PDF

The self-assembly of human islet amyloid polypeptide (hIAPP) into β-sheet-rich nanofibrils is associated with the pathogeny of type 2 diabetes. Soluble hIAPP is intrinsically disordered with N-terminal residues 8-17 as α-helices. To understand the contribution of the N-terminal helix to the aggregation of full-length hIAPP, here the oligomerization dynamics of the hIAPP fragment 8-20 (hIAPP8-20) are investigated with combined computational and experimental approaches.

View Article and Find Full Text PDF