Toxicol Mech Methods
February 2017
Alcohol-mediated liver injury is associated with changes in the level of the major cellular antioxidant glutathione (GSH). It is interesting to investigate if the changes in intracellular GSH level through exogenous agents affect the intracellular cysteine content and the protein adduct formation indicative of oxidative insult in chronic alcohol treated liver cells. In VL-17A cells treated with 2 mM N-acetyl cysteine (NAC) or 0.
View Article and Find Full Text PDFPurpose: The deficiency of glutathione (GSH) has been linked to several diseases. The study investigated the role of GSH as a protective factor against hyperglycemia-mediated injury in VL-17A cells treated with 50 mM glucose.
Methods: The cell viability and different oxidative stress parameters including glyoxalase I activity were measured.
Gluthathione (GSH) is a major cellular antioxidant. The present study utilizing VL-17A cells exposed to chronic alcohol plus high glucose investigated the changes in oxidative stress, toxicity, and glyoxalase 1 activity as a detoxification pathway due to changes in GSH level through GSH supplementation with N-acetyl cysteine (NAC) or ursodeoxycholic acid (UDCA) and its depletion through buthionine sulfoximine (BSO) or diethyl maleate (DEM). Glyoxalase 1 plays an important role in detoxification of methylglyoxal which is formed as a precursor of advanced glycated end products formed due to high glucose mediated oxidative stress.
View Article and Find Full Text PDFSeveral antioxidants and agents having similar antioxidant effects are known to exert beneficial effects in ameliorating the injurious effects of hyperglycemia on liver in different diabetic in vitro and in vivo models. The review deals with some of the agents which have been shown to exert protective effects on liver against hyperglycemic insult and the various mechanisms involved. The different classes of agents which protect the diabetic liver or decrease the severity of hyperglycemia mediated injury include flavonoids, catechins, and other polyphenolic compounds, curcumin and its derivatives, certain vitamins, hormones and drugs, trace elements, prototypical antioxidants and amino acids.
View Article and Find Full Text PDFBackground: In recent years, there has been a growing interest to explore the association between liver injury and diabetes. Advanced glycated end product (AGE) formation which characterizes diabetic complications is formed through hyperglycemia mediated oxidative stress and is itself a source for ROS. Further, in VL-17A cells over-expressing ADH and CYP2E1, greatly increased oxidative stress and decreased viability have been observed with high glucose exposure.
View Article and Find Full Text PDFSubcell Biochem
August 2014
Research on Cytochrome P450 2E1 (CYP2E1), a key enzyme in alcohol metabolism has been very well documented in literature. Besides the involvement of CYP2E1 in alcohol metabolism as illustrated through the studies discussed in the chapter, recent studies have thrown light on several other aspects of CYP2E1 i.e.
View Article and Find Full Text PDFAim: Ethanol metabolism leads to the formation of acetaldehyde and malondialdehyde. Acetaldehyde and malondialdehyde can together form malondialdehyde-acetaldehyde (MAA) adducts. The role of alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1) in the formation of MAA-adducts in liver cells has been investigated.
View Article and Find Full Text PDFCD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) and programmed death-1 (PD-1) molecules have emerged as pivotal players in immune suppression of chronic diseases. However, their impact on the disease severity, therapeutic response and restoration of immune response in human tuberculosis remains unclear. Here, we describe the possible role of Treg cells, their M.
View Article and Find Full Text PDFHigh glucose mediated oxidative stress and cell death is a well documented phenomenon. Using VL-17A cells which are HepG2 cells over-expressing alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1) and control HepG2 cells, the association of ADH and CYP2E1 with high glucose mediated oxidative stress and toxicity in liver cells was investigated. Cell viability was measured and apoptosis or necrosis was determined through caspase-3 activity, Annexin V-propidium iodide staining and detecting decreases in mitochondrial membrane potential.
View Article and Find Full Text PDFBackground: Hyperglycemia or alcoholism can lead to impaired liver functions. Cytochrome P450 2E1 (CYP2E1) is elevated in hyperglycemia or alcoholism and plays a critical role in generating oxidative stress in the cell.
Methods: In the present study, we have used VL-17A cells that overexpress the alcohol metabolizing enzymes [alcohol dehydrogenase (ADH) and CYP2E1] to investigate the toxicity due to ethanol (EtOH) plus high glucose.
Alcohol induced liver injury has been studied extensively. Using literature search and bioinformatics tools, the present study characterizes the genes involved in alcohol induced liver injury. The cellular and metabolic processes in which genes involved in alcohol induced liver injury are implicated are also discussed.
View Article and Find Full Text PDFCytochrome P450 2E1 (CYP2E1), a microsomal enzyme involved in xenobiotic metabolism and generation of oxidative stress, has been implicated in promoting liver injury. The review deals with the changes in various cellular pathways in liver linked with the changes in regulation of CYP2E1 under hyperglycemic conditions. Some of the hepatic abnormalities associated with hyperglycemia-mediated induction of CYP2E1 include increased oxidative stress, changes in mitochondrial structure and function, apoptosis, nitrosative stress, and increased ketone body accumulation.
View Article and Find Full Text PDFToxicol In Vitro
June 2011
Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied.
View Article and Find Full Text PDFThe increasing prevalence of diabetes continues to be a major health issue world wide. Liver injury is highly relevant in diabetic subjects and Type 2 diabetes mellitus is an acknowledged risk factor for non-alcoholic fatty liver disease (NAFLD). Chronic hyperglycemia is an important feature of diabetes and hyperglycemia induced mitochondrial dysfunction in liver holds importance in context to NAFLD.
View Article and Find Full Text PDFHyperglycemia which characterizes diabetes, leads to several abnormalities in the cellular pathways. We examined the toxicity of glucose in human hepatoma HepG2 cells. HepG2 cells when incubated with 50mM glucose for 72h showed altered morphology i.
View Article and Find Full Text PDFDiabetes, characterized by chronic hyperglycemia, has reached serious epidemic proportions. It is also not infrequent to find increased incidence of liver injury in diabetics and hyperglycemia plays an important role in promoting liver injury through several mechanisms. The following review identifies the pathways through which hyperglycemia causes changes in liver of various animal models and liver cell culture models, and elucidates the mechanisms and consequences of hyperglycemia induced liver injury in humans.
View Article and Find Full Text PDFUnlabelled: Cytochrome P450 2E1 (CYP2E1) activates several hepatotoxins and contributes to alcoholic liver damage. Obesity is a growing health problem in the United States. The aim of the present study was to evaluate whether acetone- or pyrazole-mediated induction of CYP2E1 can potentiate liver injury in obesity.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2007
Pyrazole treatment to induce cytochrome P-450 2E1 (CYP2E1) was recently shown to cause liver injury in ob/ob mice but not in lean mice. The present study investigated the effects of S-adenosyl-l-methionine (SAM) on the CYP2E1-dependent liver injury in ob/ob mice. Pyrazole treatment of ob/ob mice for 2 days caused necrosis, steatosis, and elevated serum transaminase and triglyceride levels compared with saline ob/ob mice.
View Article and Find Full Text PDFCytochrome P450 2E1 (CYP2E1) can mediate reactive oxygen species (ROS) induced cell death through its catalytic processes. Heat shock protein 90 (Hsp90) is an important molecular chaperone which is essential for cellular integrity. We previously showed that inhibition of Hsp90 with Geldanamycin (GA), an inhibitor of Hsp90 increased CYP2E1 mediated toxicity in CYP2E1 over-expressing HepG2 cells (E47 cells) but not in C34-HepG2 cells devoid of CYP2E1 expression.
View Article and Find Full Text PDFFreshly isolated peripheral blood lymphocytes from control rats were found to catalyze the N-demethylation of erythromycin, known to be mediated by cytochrome P450 3A (CYP3A) isoenzymes in rat liver. Pretreatment of rats with dexamethasone (100 mg/kgx3 days, i.p.
View Article and Find Full Text PDFCytochrome P450 2E1 (CYP2E1) potentiates oxidative stress-mediated cell death. Heat shock proteins (Hsps) modulate the stability and function of numerous proteins. We examined the effect of geldanamycin (GA), an inhibitor of Hsp90, on CYP2E1-mediated toxicity in transfected HepG2 cells overexpressing CYP2E1 (E47 cells).
View Article and Find Full Text PDFCYP2E1 causes oxidative stress mediated cell death; the latter is one mechanism for endoplasmic reticulum (ER) stress in the cell. Unfolded proteins accumulate during ER stress and ER resident proteins GRP78 and GRP94 protect cells against ER dysfunction. We examined the possible role of GRP78 and GRP94 as protective factors against CYP2E1-mediated toxicity in HepG2 cells expressing CYP2E1 (E47 cells).
View Article and Find Full Text PDFAcute and chronic ethanol treatment has been shown to increase the production of reactive oxygen species, lower cellular antioxidant levels, and enhance oxidative stress in many tissues, especially the liver. Ethanol-induced oxidative stress plays a major role in the mechanisms by which ethanol produces liver injury. Many pathways play a key role in how ethanol induces oxidative stress.
View Article and Find Full Text PDFStudies initiated to characterize cytochrome P450 2E1(CYP2E1) in freshly isolated rat blood lymphocytes revealed significant mRNA of CYP2E1 in control blood lymphocytes. RT-PCR studies have shown that as observed in liver, acute treatment of ethanol (single oral dose of 0.8 ml/kg b.
View Article and Find Full Text PDFAbstract The number of obese people in the world is growing rapidly worldwide and has reached epidemic status. Obesity is often associated with the clustering of metabolic and cardiovascular risk factors that contribute to metabolic syndrome or syndrome X. Likewise, metabolic syndrome and its associated traits are major contributing factors to the increase in nephropathy and end stage renal disease.
View Article and Find Full Text PDF