Prostate cancer (PCa) is one of the most common malignancies for male individuals globally. Androgen deprivation therapy (ADT) initially demonstrated significant efficacy in treating PCa; however, most cases of PCa eventually progress to castration-resistant prostate cancer (CRPC), which becomes increasingly challenging to manage. Notably, the loss or disruption of primary cilia in PCa cells may play a critical role in the progression of the disease, and there are no reports on the role of circular RNAs in ciliogenesis.
View Article and Find Full Text PDFProstate cancer (PCa) incidence and cancer-related deaths are both high in the male population. Once castration-resistant prostate cancer (CRPC) has developed, PCa can be difficult to manage. Circular RNAs (circRNAs) play essential roles in the regulation of carcinogenesis and cancer progression.
View Article and Find Full Text PDFProstate cancer (PCa), a prevalent malignancy among elderly males, exhibits a notable rate of advancement, even when subjected to conventional androgen deprivation therapy or chemotherapy. An effective progression prediction model would prove invaluable in identifying patients with a higher progression risk. Using bioinformatics strategies, we integrated diverse data sets of PCa to construct a novel risk model predicated on gene expression and progression-free survival (PFS).
View Article and Find Full Text PDFProstate cancer (PCa) is one of the most common cancers affecting the health of men worldwide. Castration-resistant prostate cancer (CRPC), the advanced and refractory phase of prostate cancer, has multiple mechanisms of resistance to androgen deprivation therapy (ADT) such as AR mutations, aberrant androgen synthase, and abnormal expression of AR-related genes. Based on the research of the AR pathway, new drugs for the treatment of CRPC have been developed in clinical practice, such as Abiraterone and enzalutamide.
View Article and Find Full Text PDFCastration-resistant prostate cancer (CRPC) responds poorly to existing therapy and appears as the lethal consequence of prostate cancer (PCa) progression. The tumour microenvironment (TME) has been thought to play a crucial role in CRPC progression. Here, we conducted single-cell RNA sequencing analysis on two CRPC and two hormone-sensitive prostate cancer (HSPC) samples to reveal potential leading roles in castration resistance.
View Article and Find Full Text PDFProstate cancer (PCa) is one of the most common malignancies in males globally, and its pathogenesis is significantly related to androgen. As one of the important treatments for prostate cancer, androgen deprivation therapy (ADT) inhibits tumor proliferation by controlling androgen levels, either surgically or pharmacologically. However, patients treated with ADT inevitably develop biochemical recurrence and advance to castration-resistant prostate cancer which has been reported to be associated with androgen biosynthetic and catabolic pathways.
View Article and Find Full Text PDFThe innovation of immunotherapy was a milestone in the treatment of bladder cancer (BLCA). However, the treatment benefits varied by individual thus promoting the investigation of the biomarker of the patients. Unfortunately, there were not many effective predictive models, which were desired by clinicians, for BLCA that can predict the prognosis and benefit of immunotherapy.
View Article and Find Full Text PDF