Charge transport and electron emission properties in polypropylene and its nanocomposites filled with nanoclay particles submitted to an electron irradiation, in a Scanning Electron Microscope (SEM), are investigated using induced displacement and leakage currents. The measurements have been performed at various temperatures ranging from 20°C to 75°C at a primary beam energy of 20keV and a primary beam current of 1nA with the aim to highlight the effect of temperature and nanoclay content on these properties. The results show, at a given temperature, that the incorporation of clay in polypropylene (PP) matrix paradoxically leads to a concomitant increase in the electrical conductivity and the charge accumulated.
View Article and Find Full Text PDFZinc oxide (ZnO) layers consisting of grains closely packed together are grown using a solgel synthesis and spin-coating deposition process. The morphologies are characterized by atomic force microscopy and X-ray diffraction, and their optical properties are investigated by spectroscopic ellipsometry at the different stages of the growth process. The optical observations are correlated with evolution of morphology and orientation.
View Article and Find Full Text PDFWhen atomic hydrogen interacts with hydrogenated amorphous silicon (a-Si:H), the induced modifications are of crucial importance during a-Si:H based devices manufacturing or processing. In the case of hydrogen plasma, the depth of the modified zone depends not only on the plasma processing parameters but also on the material. In this work, we exposed a-Si:H thin films to H2 plasma just after their deposition.
View Article and Find Full Text PDF