Background: Intermediate phenotypes, such as characteristic neuroimaging patterns, offer unique insights into the genetic and stress-related underpinnings of neuropsychiatric disorders like depression. This study aimed to identify neuroimaging intermediate phenotypes associated with depression, bridging etiological factors to behavioral manifestations and connecting insights from animal models to diverse clinical populations.
Methods: We analyzed datasets from both rodents and humans.
Introduction: The angiotensin-converting enzyme 2 (ACE2), which is expressed in cerebral vascular endothelial cells (CVECs), has been currently identified as a functional receptor for SARS-CoV-2.
Methods: We specifically induced injury to ACE2-expressing CVECs in mice and evaluated the effects of such targeted damage through magnetic resonance imaging (MRI) and cognitive behavioral tests. In parallel, we recruited a single-center cohort of COVID-19 survivors and further assessed their brain microvascular injury based on cognition and emotional scales, cranial MRI scans, and blood proteomic measurements.
Background: Early life stress (ELS) significantly increases the risk of mood disorders and affects the neurodevelopment of the primary cortex.
Hypothesis: Modulating the primary cortex through neural intervention can ameliorate the impact of ELS on brain development and consequently alleviate its effects on mood disorders.
Method: We induced the chronic unpredictable mild stress (CUMS) model in adolescent rats, followed by applying repetitive transcranial magnetic stimulation (rTMS) to their primary cortex in early adulthood.
A long-standing hypothesis proposes that certain RNA(s) must exhibit structural roles in microtubule assembly. Here, we identify a long noncoding RNA (TubAR) that is highly expressed in cerebellum and forms RNA-protein complex with TUBB4A and TUBA1A, two tubulins clinically linked to cerebellar and myelination defects. TubAR knockdown in mouse cerebellum causes loss of oligodendrocytes and Purkinje cells, demyelination, and decreased locomotor activity.
View Article and Find Full Text PDFEarly-onset mental disorders are associated with disrupted neurodevelopmental processes during adolescence. The methylazoxymethanol acetate (MAM) animal model, in which disruption in neurodevelopmental processes is induced, mimics the abnormal neurodevelopment associated with early-onset mental disorders from an etiological perspective. We conducted longitudinal structural magnetic resonance imaging (MRI) scans during childhood, adolescence, and adulthood in MAM rats to identify specific brain regions and critical windows for intervention.
View Article and Find Full Text PDFAims: Neurodevelopmental impairments are closely linked to the basis of adolescent major psychiatric disorders (MPDs). The visual cortex can regulate neuroplasticity throughout the brain during critical periods of neurodevelopment, which may provide a promising target for neuromodulation therapy. This cross-species translational study examined the effects of visual cortex repetitive transcranial magnetic stimulation (rTMS) on neurodevelopmental impairments in MPDs.
View Article and Find Full Text PDFThanks to its increased sensitivity, single-shot ultrahigh field functional MRI (UHF fMRI) could lead to valuable insight about subtle brain functions such as olfaction. However, UHF fMRI experiments targeting small organs next to air voids, such as the olfactory bulb, are severely affected by field inhomogeneity problems. Spatiotemporal Encoding (SPEN) is an emerging single-shot MRI technique that could provide a route for bypassing these complications.
View Article and Find Full Text PDFBackground: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated.
View Article and Find Full Text PDFPsilocybin, a naturally occurring hallucinogenic component of magic mushrooms, has significant psychoactive effects in both humans and rodents. But the underlying mechanisms are not fully understood. Blood-oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is a useful tool in many preclinical and clinical trials to investigate psilocybin-induced changes of brain activity and functional connectivity (FC) due to its noninvasive nature and widespread availability.
View Article and Find Full Text PDFIt has been a long-cherished wish in biomedicine research to have an imaging tool to visualize gene expression, with good spatiotemporal resolution, in rodent and primate animals noninvasively and longitudinally. To this purpose, we here present a novel genetic encoded magnetic resonance imaging reporter, i.e.
View Article and Find Full Text PDFA mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging.
View Article and Find Full Text PDFAstrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed.
View Article and Find Full Text PDFBACKGROUNDAfter the initial surge in COVID-19 cases, large numbers of patients were discharged from a hospital without assessment of recovery. Now, an increasing number of patients report postacute neurological sequelae, known as "long COVID" - even those without specific neurological manifestations in the acute phase.METHODSDynamic brain changes are crucial for a better understanding and early prevention of "long COVID.
View Article and Find Full Text PDFBiomed Pharmacother
December 2021
Knee osteoarthritis (KOA) is a common disease with no specific treatment. Icariin (ICA) is considered an agent for KOA. This study aimed to confirm the pain-related neuromodulation mechanisms of ICA on KOA.
View Article and Find Full Text PDFThe investigation of neural circuits is important for interpreting both healthy brain function and psychiatric disorders. Currently, the architecture of neural circuits is always investigated with fluorescent protein encoding neurotropic virus and ex vivo fluorescent imaging technology. However, it is difficult to obtain a whole-brain neural circuit connection in living animals, due to the limited fluorescent imaging depth.
View Article and Find Full Text PDFBACKGROUNDThe coronavirus disease 2019 (COVID-19) rapidly progressed to a global pandemic. Although some patients totally recover from COVID-19 pneumonia, the disease's long-term effects on the brain still need to be explored.METHODSWe recruited 51 patients with 2 subtypes of COVID-19 (19 mild and 32 severe) with no specific neurological manifestations at the acute stage and no obvious lesions on the conventional MRI 3 months after discharge.
View Article and Find Full Text PDFPropofol is the most common intravenous anesthetic agent for induction and maintenance of anesthesia, and has been used clinically for more than 30 years. However, the mechanism by which propofol induces loss of consciousness (LOC) remains largely unknown. The adenosine A receptor (A R) has been extensively proven to have an effect on physiological sleep.
View Article and Find Full Text PDFThe prevailing view is that parvalbumin (PV) interneurons play modulatory roles in emotional response through local medium spiny projection neurons (MSNs). Here, we show that PV activity within the nucleus accumbens shell (sNAc) is required for producing anxiety-like avoidance when mice are under anxiogenic situations. Firing rates of sNAc neurons were negatively correlated to exploration time in open arms (threatening environment).
View Article and Find Full Text PDFTinnitus is thought to be triggered by aberrant neural activity in the central auditory pathway and is often accompanied by comorbidities of emotional distress and anxiety, which imply maladaptive functional connectivity to limbic structures, such as the amygdala and hippocampus. Tinnitus patients with normal audiograms can also have accompanying anxiety and depression, clinically. To test the role of functional connectivity between the central auditory pathway and limbic structures in patients with tinnitus with normal audiograms, we developed a murine noise-induced tinnitus model with a temporary threshold shift (TTS).
View Article and Find Full Text PDFBackground: Myocardial ischemia and reperfusion-evoked spinal reflexes involve nociceptive signals that trigger neuronal excitation through cardiac afferents, projecting into the thoracic spinal cord. Ischemic preconditioning (IPC) involves brief episodes of sublethal ischemia and reperfusion enhances the resistance of the myocardium to subsequent ischemic insults. This study investigated the effects of IPC on ischemia-reperfusion (I/R) stimulation-induced activation in the thoracic spinal cord of rats.
View Article and Find Full Text PDFWith their essential regulatory roles in gene expression and high abundance in the brain, circular RNAs (circRNAs) have recently attracted considerable attention. Many studies have shown that circRNAs play important roles in the pathology of CNS diseases, but whether circRNAs participate in E. coli-induced bacterial meningitis is unclear.
View Article and Find Full Text PDFEscherichia coli is the most common Gram-negative bacterium that possesses the ability to cause neonatal meningitis, which develops as circulating bacteria penetrate the blood-brain barrier (BBB). However, whether meningitic E. coli could induce disruption of the BBB and the underlying mechanisms are poorly understood.
View Article and Find Full Text PDF