CPT Pharmacometrics Syst Pharmacol
February 2025
Physiologically based pharmacokinetic (PBPK) modeling, a cornerstone of model-informed drug development and model-informed precision dosing, simulates drug disposition in the human body by integrating physiological, biochemical, and physicochemical parameters. While PBPK modeling has advanced globally since the 1970s, China's adoption of this technology has followed a distinctive path, characterized by accelerated growth over the past 2 decades. This review provides a comprehensive analysis of China's contributions to PBPK modeling, addressing knowledge gaps in publication trends, application domains, and platform preferences.
View Article and Find Full Text PDFThis review examines the role of model-informed drug development (MIDD) in advancing antibacterial and antiviral drug development, with an emphasis on the inclusion of host system dynamics into modeling efforts. Amidst the growing challenges of multidrug resistance and diminishing market returns, innovative methodologies are crucial for continuous drug discovery and development. The MIDD approach, with its robust capacity to integrate diverse data types, offers a promising solution.
View Article and Find Full Text PDFPropylthiouracil (PTU) and methimazole (MMI), two classical antithyroid agents possess risk of drug-induced liver injury (DILI) with unknown mechanism of action. This study aimed to examine and compare their hepatic toxicity using a quantitative system toxicology approach. The impact of PTU and MMI on hepatocyte survival, oxidative stress, mitochondrial function and bile acid transporters were assessed in vitro.
View Article and Find Full Text PDFBackground: Lenvatinib's efficacy as a frontline targeted therapy for radioactive iodine-refractory thyroid carcinoma and advanced hepatocellular carcinoma owes to its inhibition of multiple tyrosine kinases. However, as a CYP3A4 substrate, lenvatinib bears susceptibility to pharmacokinetic modulation by co-administered agents. Schisantherin A (STA) and schisandrin A (SIA) - bioactive lignans abundant in the traditional Chinese medicinal Wuzhi Capsule - act as CYP3A4 inhibitors, engendering the potential for drug-drug interactions (DDIs) with lenvatinib.
View Article and Find Full Text PDF