The antibiotic tetracycline (TC) is an emerging pollutant frequently detected in various environments. Although enzymatic remediation is a promising strategy for mitigating TC contamination, the availability of effective TC-degrading enzymes remains limited, and their mechanisms and applications are not fully understood. This study developed a comprehensive TC-degrading enzyme library from the gut microbiome of the highly TC-resistant saprophagous insect, black soldier fly larvae (BSFL), using an integrated metagenomic and comparative metatranscriptomic approach, identifying 105 potential novel TC-degradation genes.
View Article and Find Full Text PDFThe antibiotic tetracycline (TC) is an emerging pollutant frequently detected in various environments. Biodegradation is a crucial approach for eliminating TC contamination. However, only a few efficient TC-degrading bacteria have been isolated, and the molecular mechanisms of TC degradation, as well as their application potential, remain poorly understood.
View Article and Find Full Text PDFBlack soldier fly () larvae (BSFL) possess remarkable antibiotic degradation abilities due to their robust intestinal microbiota. However, the response mechanism of BSFL intestinal microbes to the high concentration of antibiotic stress remains unclear. In this study, we investigated the shift in BSFL gut microbiome and the functional genes that respond to 1250 mg/kg of tetracycline via metagenomic and metatranscriptomic analysis, respectively.
View Article and Find Full Text PDF