Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations.
View Article and Find Full Text PDFWhile numerous studies have investigated the abundance of ammonia oxidising bacteria and archaea (AOB/AOA) via the ammonia monooxygenase gene amoA, less is known about their small-scale variation and if amoA gene abundance equates to activity. Here we present a spatial and temporal study of ammonia oxidation in two small intertidal bays, Rusheen and Clew bay, Ireland. Potential Nitrification Rate (PNR) was ten-fold higher in Rusheen bay (Clew: 0.
View Article and Find Full Text PDF