Publications by authors named "Aodi He"

Article Synopsis
  • Metastasis is the leading cause of cancer deaths, particularly in hepatocellular carcinoma (HCC), and is linked to high blood platelet counts and tumor expression of ADAM10, which indicate poor patient prognosis.
  • Research showed that platelets increase ADAM10 expression in tumor cells through the TLR4/NF-κB signaling pathway, leading to the shedding of CX3CL1 and promoting cancer cell migration and invasion.
  • The study highlights the potential of targeting the TLR4/ADAM10/CX3CL1 axis as a strategy to inhibit platelet-driven metastasis in HCC, supported by findings from both in vitro and in vivo mouse models.
View Article and Find Full Text PDF

Background: Glioblastomas are universally lethal brain tumors containing tumor-propagating glioblastoma stem cells (GSCs). EGFR gene amplification or mutation is frequently detected in GBMs and is associated with poor prognosis. However, EGFR variants in GSCs and their role in the maintenance of GSCs and progression of GBM are unclear.

View Article and Find Full Text PDF

The inhibitory neurons in the brain play an essential role in neural network firing patterns by releasing γ-aminobutyric acid (GABA) as the neurotransmitter. In the mouse brain, based on the protein molecular markers, inhibitory neurons are usually to be divided into three non-overlapping groups: parvalbumin (PV), neuropeptide somatostatin (SST), and vasoactive intestinal peptide (VIP)-expressing neurons. Each neuronal group exhibited unique properties in molecule, electrophysiology, circuitry, and function.

View Article and Find Full Text PDF

Retrograde tracing is an important method for dissecting neuronal connections and mapping neural circuits. Over the past decades, several virus-based retrograde tracers have been developed and have contributed to display multiple neural circuits in the brain. However, most of the previously widely used viral tools have focused on mono-transsynaptic neural tracing within the central nervous system, with very limited options for achieving polysynaptic tracing between the central and peripheral nervous systems.

View Article and Find Full Text PDF

Cholinergic neurons in the basal forebrain constitute a major source of cholinergic inputs to the forebrain, modulate diverse functions including sensory processing, memory and attention, and are vulnerable to Alzheimer's disease (AD). Recently, we classified cholinergic neurons into two distinct subpopulations; calbindin D28K-expressing (D28K) versus D28K-lacking (D28K) neurons. Yet, which of these two cholinergic subpopulations are selectively degenerated in AD and the molecular mechanisms underlying this selective degeneration remain unknown.

View Article and Find Full Text PDF

The raphe nucleus is critical for feeding, rewarding and memory. However, how the heterogenous raphe neurons are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing VGLUT3.

View Article and Find Full Text PDF

Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neurodevelopmental disorders. However, the neuropathogenesis remains largely elusive due to a lack of informative animal models. In this study, we developed a congenital murine CMV (cMCMV) infection mouse model with high survival rate and long survival period that allowed long-term follow-up study of neurodevelopmental disorders.

View Article and Find Full Text PDF

Stroke activates microglia pro-inflammatory response that not only induces the early neuronal injuries but also causes the secondary brain infarction. Yet, the underlying mechanisms for how microglia become activated in stroke are still unknown. Here, using the next-generation of RNA sequencing we find a total of 778 genes increasingly expressed in brain of stroke mice.

View Article and Find Full Text PDF

Sanguinarine, a benzophenanthridine alkaloid, has been described to have an antiplatelet activity. However, its antithrombotic effect and the mechanism of platelet inhibition have not thoroughly been explored. The current study found that sanguinarine had an inhibitory effect on thrombus formation.

View Article and Find Full Text PDF

Mossy cells (MCs) are a unique group of excitatory neurons in the hippocampus, a brain region important for emotion, learning, and memory. Due to the lack of a reliable method to isolate MCs from other cell types, how MCs integrate neural information and convey it to their synaptic targets for engaging a specific function are still unknown. Here, we report that MCs control the efficacy of spatial memory retrieval by synapsing directly onto local somatostatin-expressing (SST) cells.

View Article and Find Full Text PDF

Recently, we have reported that dentate mossy cells (MCs) control memory precision via directly and functionally innervating local somatostatin (SST) inhibitory interneurons. Here, we report a discovery that dysfunction of synaptic transmission between MCs and SST cells causes memory imprecision in a mouse model of early Alzheimer's disease (AD). Single-cell RNA sequencing reveals that miR-128 that binds to a 3'UTR of STIM2 and inhibits STIM2 translation is increasingly expressed in MCs from AD mice.

View Article and Find Full Text PDF

Neferine has long been recognized as a medicinal herbal ingredient with various physiological and pharmacological activities. Although previous studies have reported its antithrombotic effect, the underlying mechanisms have not been thoroughly investigated. Since platelets play a key role in thrombosis, we investigated the effects of neferine on human platelet function and the potential mechanisms.

View Article and Find Full Text PDF

Tumor-associated thrombosis is the second leading risk factor for cancer patient death, and platelets activity is abnormal in cancer patients. Discovering the mechanism of platelet activation and providing effective targets for therapy are urgently needed. Cancer cell- derived IgG has been reported to regulate development of tumors.

View Article and Find Full Text PDF

Platelets in the primary tumor microenvironment play crucial roles in regulating tumor growth, metastasis, and angiogenesis, but the underlying mechanisms are unclear. Here, we show that platelet releasates exhibited a proliferative effect on HeLa cells, and this effect correlated with a reduction of KLF6 expression. After incubation with either washed human platelets or collagen-related peptide (CRP) activated platelet releasates, expression of KLF6 in the HeLa cervical tumor cell line was markedly reduced.

View Article and Find Full Text PDF

Platelets in the primary tumor microenvironment play crucial roles in the regulation of tumor progression, but the mechanisms underlying are poorly understood. Here, we report that platelet releasates exerted a proliferative effect on hepatocellular carcinoma (HCC) cells both in vitro and in vivo. This effect depended on a reduction of KLF6 expression in HCC cells.

View Article and Find Full Text PDF

Simvastatin is a hypolipidemic drug that inhibits hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase to control elevated cholesterol, or hypercholesterolemia. Previous studies have shown that simvastatin may attenuate inflammation in ischemia-reperfusion injury and sepsis. Herein, we hypothesized that simvastatin may prevent rats from lipopolysaccharide (LPS)-induced septic shock.

View Article and Find Full Text PDF

Scope: Propolis is thought to help prevent thrombotic and related cardiovascular diseases in humans. Chrysin, a bioflavonoids compound found in high levels in propolis and in honey, has been reported to possess antiplatelet activity. However, the mechanism by which it inhibits platelet function is unclear.

View Article and Find Full Text PDF

Flavonoids exert both anti-oxidant and anti-platelet activities in vitro and in vivo. Pentamethylquercetin (PMQ), a polymethoxylated flavone derivative, has been screened for anti-carcinogenic and cardioprotective effects. However, it is unclear whether PMQ has anti-thrombotic effects.

View Article and Find Full Text PDF

Loureirin A is a flavonoid extracted from Dragon׳s Blood that has been used to promote blood circulation and remove stasis in Chinese traditional medicine. However, the mechanisms of these effects are not fully understood. We explored the anti-platelet activity and underlying mechanism of loureirin A in vitro.

View Article and Find Full Text PDF

Introduction: 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside(THSG) is a water-soluble component of the rhizome extract from the traditional Chinese herb Polygonum multiflorum. Recent studies have demonstrated that THSG has potent anti-oxidative and anti-inflammatory effects. In this study, we investigated the anti-platelet aggregation, secretion and spreading of THSG with different methods.

View Article and Find Full Text PDF