Publications by authors named "Ao-tian Xu"

Unlabelled: Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious pathogen that causes severe diseases in pigs and great economic losses to the swine industry worldwide. Type I interferons (IFNs) play a crucial role in antiviral immunity. In the present study, we demonstrated that infection with the highly pathogenic PRRSV strain JXwn06 antagonized type I IFN expression induced by poly(I·C) in both porcine alveolar macrophages (PAMs) and blood monocyte-derived macrophages (BMo).

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in pigs caused by PRRS virus (PRRSV). Although PRRSV infection-induced cell apoptosis has been established, the related viral protein is still unknown. Here, we reported that PRRSV nonstructural protein 4 (nsp4) was a critical apoptosis inducer.

View Article and Find Full Text PDF

The amino acid sequence (TAVSPTTLR, 829-837aa) on the glycoprotein E2 of classical swine fever virus (CSFV) is a conserved and linear neutralizing epitope. In the present study, two peptides were constructed based the core sequence of this neutralizing epitope, the dendrimeric peptide (Th-B(4)) containing four copies of B cell epitope fused to one copy of promiscuous T helper (Th) cell epitope and the peptide Th-B containing a single copy of B cell epitope fused to one copy of Th cell epitope. The dendrimeric peptide Th-B(4) elicited high titers of neutralizing antibodies as detected in an indirect ELISA, blocking ELISA and neutralization test and induced a complete protection against CSFV C strain in rabbits.

View Article and Find Full Text PDF

The development of cell-mediated immunity has been known extremely important in clearing porcine reproductive and respiratory syndrome virus (PRRSV) in infected pigs. However, the PRRS immunology regarding the interaction of T-cells and PRRSV proteins is poorly understood. To identify the T-cell immunodominant epitopes on the membrane (M) protein of PRRSV, a series of 31 overlapping pentadecapeptides covering the entire M protein were designed and synthesized.

View Article and Find Full Text PDF

The non-structural protein 4 (Nsp4) of porcine reproductive and respiratory syndrome virus (PRRSV) functions as a 3C-like proteinase (3CLpro) and plays a pivotal role in gene expression and replication. We have examined the biochemical properties of PRRSV 3CLpro and identified those amino acid residues involved in its catalytic activity as a prelude to developing anti-PRRSV strategies. The 3C-like proteinase (3CLpro) of porcine reproductive and respiratory syndrome virus (PRRSV) was expressed in Escherichia coli and characterized.

View Article and Find Full Text PDF

Since April 2006, swine herds have experienced the outbreaks of a highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China. To explore the possible mechanism of the emergence of the highly pathogenic PRRS and more fully understand the extent of genetic diversity of PRRSV in China, we analyzed the ORF5 gene sequences of 159 representative PRRSV isolates in 16 provinces from 2006 to 2008. Sequence and phylogenetic analyses showed that all these 159 isolates belonged to the North American genotype and were further divided into six subgenotypes; 140 of 159 isolates were closely related to the highly pathogenic PRRSV with 98.

View Article and Find Full Text PDF