CRISPR-Cas are prokaryotic adaptive immune systems. Cas nucleases generally use CRISPR-derived RNA guides to specifically bind and cleave DNA or RNA targets. Here, we describe the experimental characterization of a bacterial CRISPR effector protein Cas12m representing subtype V-M.
View Article and Find Full Text PDFAs part of the ongoing bacterial-phage arms race, CRISPR-Cas systems in bacteria clear invading phages whereas anti-CRISPR proteins (Acrs) in phages inhibit CRISPR defenses. Known Acrs have proven extremely diverse, complicating their identification. Here, we report a deep learning algorithm for Acr identification that revealed an Acr against type VI-B CRISPR-Cas systems.
View Article and Find Full Text PDFRNA helicases play crucial functions in RNA biology. In plants, RNA helicases are encoded by large gene families, performing roles in abiotic stress responses, development, the post-transcriptional regulation of gene expression as well as house-keeping functions. Several of these RNA helicases are targeted to the organelles, mitochondria and chloroplasts.
View Article and Find Full Text PDF6S RNA, a conserved and abundant small non-coding RNA found in most bacteria, regulates gene expression by inhibiting RNA polymerase (RNAP) holoenzyme. 6S RNAs from α-proteobacteria have been studied poorly so far. Here, we present a first in-depth analysis of 6S RNAs from two α-proteobacteria species, Bradyrhizobium japonicum and Sinorhizobium meliloti.
View Article and Find Full Text PDFThe arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression.
View Article and Find Full Text PDFDEAD-box RNA-helicases catalyze the reorganization of structured RNAs and the formation of RNP complexes. The cyanobacterium sp. PCC 6803 encodes a single DEAD-box RNA helicase, CrhR (Slr0083), whose expression is regulated by abiotic stresses that alter the redox potential of the photosynthetic electron transport chain, including temperature downshift.
View Article and Find Full Text PDFNicking endonucleases (NEases) selectively cleave single DNA strands in double-stranded DNAs at a specific site. They are widely used in bioanalytical applications and in genome editing; however, the peculiarities of DNA-protein interactions for most of them are still poorly studied. Previously, it has been shown that the large subunit of heterodimeric restriction endonuclease BspD6I (Nt.
View Article and Find Full Text PDFUp to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110.
View Article and Find Full Text PDFBackground: Nicking endonucleases are enzymes that recognize specific sites in double-stranded DNA and cleave only one strand at a predetermined position. These enzymes are involved in DNA replication and repair; they can also function as subunits of bacterial heterodimeric restriction endonucleases. One example of such a proteins is the restriction endonuclease BspD6I (R.
View Article and Find Full Text PDFIn this work, the possibility of constructing a thermo-switchable enzyme according to the "molecular gate" strategy is demonstrated. The approach is based on the covalent attachment of oligodeoxyribonucleotides to cysteine residues of an enzyme adjacent to its active center to form a temporal barrier for enzyme-substrate complex formation. The activity of the modified enzyme that had been studied here-the restriction endonuclease SsoII (R.
View Article and Find Full Text PDF