Because of the availability of the complete sequence of the genome of the model plant Arabidopsis and of insertion mutants for most genes in public mutant collections, the elucidation of the particular role of different factors involved in DNA recombination and repair processes, an important task for plant biology, is becoming feasible. An assay system based on transgenes harboring homologous overlaps of the beta-glucuronidase (uidA) gene is available to determine recombination behavior in various mutant backgrounds. Restoration of the marker gene by homologous recombination can be detected by histochemical staining in planta.
View Article and Find Full Text PDFDifferent DNA repair pathways that use homologous sequences in close proximity to genomic double-strand breaks (DSBs) result in either an internal deletion or a gene conversion. We determined the efficiency of these pathways in somatic plant cells of transgenic Arabidopsis lines by monitoring the restoration of the beta-glucuronidase (GUS) marker gene. The transgenes contain a recognition site for the restriction endonuclease I-SceI either between direct GUS repeats to detect deletion formation (DGU.
View Article and Find Full Text PDF