We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm.
View Article and Find Full Text PDFThe motion of the Solar System with respect to the cosmic rest frame modulates the monopole of the epoch of reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative of the monopole signal. We argue that although the signal is weaker by a factor of ∼100, there are significant benefits in measuring the dipole.
View Article and Find Full Text PDFBy combining data from cosmic microwave background experiments (including the recent WMAP third year results), large scale structure, and Lyman-alpha forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless+1 massive neutrino case, we bound the mass of the sterile neutrino to ms<0.26 eV (0.
View Article and Find Full Text PDF