Publications by authors named "Anyonya Guntur"

Objective: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry.

Results: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 h. Percoll purification from 100 to 200 mg fresh tissue yielded ~ 200-400 ug protein.

View Article and Find Full Text PDF

Parathyroid hormone acts through its receptor, PTHR1, expressed on osteoblasts, to control bone remodeling. Metabolic flexibility for energy generation has been demonstrated in several cell types dependent on substrate availability. Recent studies have identified a critical role for PTH in regulating glucose, fatty acid and amino acid metabolism thus stimulating both glycolysis and oxidative phosphorylation.

View Article and Find Full Text PDF

Mitochondrial fission and fusion are required for maintaining functional mitochondria. The mitofusins (MFN1 and MFN2) are known for their roles in mediating mitochondrial fusion. Recently, MFN2 has been implicated in other important cellular functions, such as mitophagy, mitochondrial motility, and coordinating endoplasmic reticulum-mitochondria communication.

View Article and Find Full Text PDF

Objective: Our goal was to isolate purified mitochondria from mouse skeletal muscle using a Percoll density gradient and to assess bioenergetic function and purity via Seahorse Extracellular Flux (XF) Analyses and mass spectrometry.

Results: Mitochondria isolated from murine quadriceps femoris skeletal muscle using a Percoll density gradient method allowed for minimally contaminated preparations with time from tissue harvest to mitochondrial isolation and quantification in about 3-4 hours. Percoll purification from 100-200 mg fresh tissue yielded ∼200-400 ug protein.

View Article and Find Full Text PDF

The contribution of mitochondria to the metabolic function of hypoxic NP cells has been overlooked. We have shown that NP cells contain networked mitochondria and that mitochondrial translocation of BNIP3 mediates hypoxia-induced mitophagy. However, whether BNIP3 also plays a role in governing mitochondrial function and metabolism in hypoxic NP cells is not known.

View Article and Find Full Text PDF

De novo limb regeneration after amputation is restricted in mammals to the distal digit tip. Central to this regenerative process is the blastema, a heterogeneous population of lineage-restricted, dedifferentiated cells that ultimately orchestrates regeneration of the amputated bone and surrounding soft tissue. To investigate skeletal regeneration, we made use of spatial transcriptomics to characterize the transcriptional profile specifically within the blastema.

View Article and Find Full Text PDF

Although the nonselective β-blocker, propranolol, improves bone density with parathyroid hormone (PTH) treatment in mice, the mechanism of this effect is unclear. To address this, we used a combination of in vitro and in vivo approaches to address how propranolol influences bone remodeling in the context of PTH treatment. In female C57BL/6J mice, intermittent PTH and propranolol administration had complementary effects in the trabecular bone of the distal femur and fifth lumbar vertebra (L ), with combination treatment achieving microarchitectural parameters beyond that of PTH alone.

View Article and Find Full Text PDF

Purpose Of Review: In this review, we provide a recent update on bioenergetic pathways in osteocytes and identify potential future areas of research interest. Studies have identified a role for regulation of bone formation and bone resorption through osteocyte mechanosensing and osteocyte secreted factors. Nevertheless, there is a paucity of studies on the bioenergetics and energy metabolism of osteocytes, which are required for the regulation of bone remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Skeletal and glycemic traits have shared etiology, but the underlying genetic factors remain largely unknown. To identify genetic loci that may have pleiotropic effects, we studied Genome-wide association studies (GWASs) for bone mineral density and glycemic traits and identified a bivariate risk locus at 3q21. Using sequence and epigenetic modeling, we prioritized an adenylate cyclase 5 (ADCY5) intronic causal variant, rs56371916.

View Article and Find Full Text PDF

The intervertebral disc and cartilage are specialized, extracellular matrix-rich tissues critical for absorbing mechanical loads, providing flexibility to the joints, and longitudinal growth in the case of growth plate cartilage. Specialized niche conditions in these tissues, such as hypoxia, are critical in regulating cellular activities including autophagy, a lysosomal degradation pathway that promotes cell survival. Mounting evidence suggests that dysregulation of autophagic pathways underscores many skeletal pathologies affecting the spinal column, articular and growth plate cartilages.

View Article and Find Full Text PDF

Measuring cellular metabolism accurately is necessary to understand bioenergetic pathways in cells. The major ATP generating pathways in cells are oxidative phosphorylation and glycolysis. We have recently analyzed and published bioenergetic pathways active in osteoblasts undergoing differentiation in response to various substrates.

View Article and Find Full Text PDF

Background: The classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear.

View Article and Find Full Text PDF

Nucleus pulposus (NP) cells reside in an avascular and hypoxic microenvironment of the intervertebral disc and are predominantly glycolytic due to robust HIF-1 activity. It is generally thought that NP cells contain few functional mitochondria compared with cells that rely on oxidative metabolism. Consequently, the contribution of mitochondria to NP cell metabolism and the role of hypoxia and HIF-1 in mitochondrial homeostasis is poorly understood.

View Article and Find Full Text PDF

Atypical antipsychotic (AA) medications including risperidone (RIS) and olanzapine (OLAN) are FDA approved for the treatment of psychiatric disorders including schizophrenia, bipolar disorder and depression. Clinical side effects of AA medications include obesity, insulin resistance, dyslipidemia, hypertension and increased cardiovascular disease risk. Despite the known pharmacology of these AA medications, the mechanisms contributing to adverse metabolic side-effects are not well understood.

View Article and Find Full Text PDF

The mitochondrial deacetylase sirtuin 3 (SIRT3) is thought to be one of the main contributors to metabolic flexibility-promoting mitochondrial energy production and maintaining homeostasis. In bone, metabolic profiles are tightly regulated and the loss of SIRT3 has deleterious effects on bone volume in vivo and on osteoblast differentiation in vitro. Despite the prominent role of this protein in bone stem cell proliferation, metabolic activity, and differentiation, the importance of SIRT3 for regeneration after bone injury has never been reported.

View Article and Find Full Text PDF

Background: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method).

Results: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world.

View Article and Find Full Text PDF

Metabolic programming of bone marrow stromal cells (BMSCs) could influence the function of progenitor osteoblasts or adipocytes and hence determine skeletal phenotypes. Adipocytes predominantly utilize oxidative phosphorylation, whereas osteoblasts use glycolysis to meet ATP demand. Here, we compared progenitor differentiation from the marrow of two inbred mouse strains, C3H/HeJ (C3H) and C57BL6J (B6).

View Article and Find Full Text PDF

Nocturnin (NOCT) belongs to the Mg dependent Exonucleases, Endonucleases, Phosphatase (EEP) family of enzymes that exhibit various functions in vitro and in vivo. NOCT is known to function as a deadenylase, cleaving poly-A tails from mRNA (messenger RNA) transcripts. Previously, we reported a role for NOCT in regulating bone marrow stromal cell differentiation through its interactions with PPARγ.

View Article and Find Full Text PDF

Molecular- and cellular-based therapies have the potential to reduce obesity-associated disease. In response to cold, beige adipocytes form in subcutaneous white adipose tissue and convert energy stored in metabolic substrates to heat, making them an attractive therapeutic target. We developed a robust method to generate a renewable source of human beige adipocytes from induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Intermittent administration of parathyroid hormone (PTH) stimulates bone formation in vivo and also suppresses the volume of bone marrow adipose tissue (BMAT). In contrast, a calorie-restricted (CR) diet causes bone loss and induces BMAT in both mice and humans. We used the CR model to test whether PTH would reduce BMAT in mice by both altering cell fate and inducing lipolysis of marrow adipocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stromal cells (MSCs) can differentiate into various cell types, with differing bioenergetic pathways utilized during this process.
  • Differentiated osteoblasts depend primarily on glycolysis for ATP production, while preadipocyte cells maintain a reliance on oxidative phosphorylation even after differentiation.
  • The distinct energy utilization patterns may influence cell fate and affect bone formation and fat development in the bone marrow.
View Article and Find Full Text PDF

Biological processes utilize energy and therefore must be prioritized based on fuel availability. Bone is no exception to this, and the benefit of remodeling when necessary outweighs the energy costs. Bone remodeling is important for maintaining blood calcium homeostasis, repairing micro cracks and fractures, and modifying bone structure so that it is better suited to withstand loading demands.

View Article and Find Full Text PDF

Bone formation is an osteoblast-specific process characterized by high energy demands due to the secretion of matrix proteins and mineralization vesicles. While glucose has been reported as the principle fuel source for osteoblasts, recent evidence supports the tenet that osteoblasts can utilize fatty acids as well. Although the ability to accumulate lipid droplets has been demonstrated in many cell types, there has been little evidence that osteoblasts possess this characteristic.

View Article and Find Full Text PDF