Enhancing the biocompatibility and osteogenic activity of nano-apatite for applications in bone graft substitutes and bone tissue engineering have been the current challenge in regeneration of lost bone. Inspired by mussels, here we have developed facile biomimetic approaches for preparation of two types of peptide-conjugated apatite nanocompsoties assisted by polydopamine (pDA). We exploited polydopamine chemistry for the modification of nano-apatite crystals: polydopamine coated apatite (HA-c-pDA) and polydopamine template-mediated apatite (HA-t-pDA), on which bone forming peptide was subsequently immobilized under weakly basic conditions to obtain peptide-conjugated apatite nanocomposites (HA-c-pep and HA-t-pep, respectively).
View Article and Find Full Text PDFRenal failure brings about abnormality of waste and toxins and deposition in the body. In clinic, the waste and toxins in vitro are eliminated by hemodialysis device with polysulfone (PSF) porous membranes. In the work, decoration of heparin (Hep) and bovine serum albumin (BSA) on PSF membranes would be beneficial to improve the hemocompatibility and reduce the anaphylatoxin formation during hemodialysis.
View Article and Find Full Text PDFCarbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses biomechanical properties such as elastic modulus similar to human bones and is becoming a dominant alternative to replace the traditional metallic implants. The defective osseointegration and bacterial infection risk of CFRPEEK, however, impede its clinical adoption. In the current study, a newly-developed carbon fiber-reinforced polyetheretherketone/nanohydroxyapatite (CFRPEEK/n-HA) ternary biocomposite was functionalized by covalently grafting carboxymethyl chitosan (CMC) followed by the decoration of a bone-forming peptide (BFP) assisted via the polydopamine tag strategy.
View Article and Find Full Text PDFHua Xi Kou Qiang Yi Xue Za Zhi
October 2015
Objective: To study the influence of nasolabial angle alteration on facial profile attractiveness and investigate the perception differences in profile attractiveness among laypeople.
Methods: A young Chinese female with normal hard and soft tissue cephalometric values was chosen as a research object. Profile photograph was taken in a natural head position.
The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface.
View Article and Find Full Text PDFAs United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. In this study, CFRPEEK-nanohydroxyapatite ternary composites (PEEK/n-HA/CF) with variable surface roughness have been successfully fabricated.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2015
As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications.
View Article and Find Full Text PDFRealization of the full potential of human induced pluripotent stem cells (hiPSCs) in clinical applications requires development of well-defined conditions for their growth and differentiation. A novel fully defined polyvinyl alcohol/hyaluronan (PVA/HA) polysaccharide nanofiber was developed for hiPSCs culture in commercially available xeno-free, chemically defined medium. Vitronectin peptide (VP) was immobilized to PVA/HA nanofibers through NHS/EDC chemistry.
View Article and Find Full Text PDF