Publications by authors named "Anxiang Cai"

Primary membranous nephropathy (PMN) is one of the leading causes of end-stage renal disease, and the most frequent cause of massive proteinuria in nondiabetic adults, resulting in fatal complications. However, the underlying pathomechanisms of PMN remain largely unclear. Here, single-cell RNA sequencing is employed to analyze kidney biopsies from eleven PMN patients and seven healthy subjects.

View Article and Find Full Text PDF

Introduction: Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide. Therefore, efforts to understand DKD pathophysiology and prevent its development at the early phase are highly warranted.

Methods: Here, we analyzed kidneys from healthy mice, diabetic mice, and diabetic mice treated with the sodium-glucose cotransporter 2 inhibitor dapagliflozin using ATAC and RNA sequencing.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is characterized by persistent damage to kidney function or structure. Progression to end-stage leads to adverse effects on multiple systems. However, owing to its complex etiology and long-term cause, the molecular basis of CKD is not completely known.

View Article and Find Full Text PDF

Background: Alterations of renal hemodynamics play an essential role in renal homeostasis and kidney diseases. Recent data indicated that semaphorin 3C (SEMA3C), a secreted glycoprotein involved in vessel development, can modulate renal vascular permeability in acute kidney injury, but whether and how it might impact systemic and renal hemodynamics is unknown.

Objectives: The objective of the study was to explore the effect of SEMA3C on systemic and renal hemodynamics.

View Article and Find Full Text PDF

To guide the development of therapeutic interventions for acute kidney injury, elucidating the deleterious pathways of this global health problem is highly warranted. Emerging evidence has indicated a pivotal role of endothelial dysfunction in the etiology of this disease. We found that the class III semaphorin SEMA3C was ectopically upregulated with full length protein excreted into the blood and truncated protein secreted into the urine upon kidney injury and hypothesized a role for SEAM3C in acute kidney injury.

View Article and Find Full Text PDF

Background: Vascular permeability (VP) is a fundamental aspect of vascular biology. A growing number of studies have revealed that many signalling pathways govern VP in both physiological and pathophysiological conditions. Furthermore, emerging evidence identifies VP alteration as a pivotal pathogenic factor in acute kidney injury, chronic kidney disease, diabetic kidney disease, and other proteinuric diseases.

View Article and Find Full Text PDF