Retinitis Pigmentosa (RP) is a heterogenous group of inherited disorder, and its progression not only affects the retina but also the primary visual cortex. This manifests imbalances in the excitatory and inhibitory neurotransmission. Here, we investigated if changes in cortical functioning is linked to alterations in GABAergic population of neurons and its two important subsets, somatostatin (SST) and parvalbumin (PV) neuron in model of retinal degeneration (RD).
View Article and Find Full Text PDFInherited progressive degeneration of photoreceptors such as retinitis pigmentosa (RP) is the most common cause of blindness leading to severe vision impairment affecting ~1 in 5,000 people worldwide. Although the function and morphology of the photoreceptors get disrupted, there is evidence that the inner retinal neurons such as bipolar cells and the retinal ganglion cells are left intact until later stages. Among several innovative therapeutic options aiming to restore vision, optogenetic therapy can bestow light sensitivity to remaining retinal neurons by ectopic expression of light-sensitive proteins.
View Article and Find Full Text PDFFront Cell Neurosci
July 2022
The leading cause of blindness in inherited and age-related retinal degeneration (RD) is the death of retinal photoreceptors such as rods and cones. The most prevalent form of RD is age-related macular degeneration (AMD) which affects the macula resulting in an irreversible loss of vision. The other is a heterogenous group of inherited disorders known as Retinitis Pigmentosa (RP) caused by the progressive loss of photoreceptors.
View Article and Find Full Text PDFThere are notable differences in functional properties of primary visual cortex (V1) neurons among mammalian species, particularly those concerning the occurrence of simple and complex cells and the generation of orientation selectivity. Here, we present quantitative data on receptive field (RF) structure, response modulation, and orientation tuning for single neurons in V1 of the tree shrew, a close relative of primates. We find that spatial RF subfield segregation, a criterion for identifying simple cells, was exceedingly small in the tree shrew V1.
View Article and Find Full Text PDFBackground: The basal forebrain (BF) regulates cortical activity by the action of cholinergic projections to the cortex. At the same time, it also sends substantial GABAergic projections to both cortex and thalamus, whose functional role has received far less attention. We used deep brain stimulation (DBS) in the BF, which is thought to activate both types of projections, to investigate the impact of BF activation on V1 neural activity.
View Article and Find Full Text PDFNeuropeptides are critical signaling molecules, involved in the regulation of diverse physiological processes including energy metabolism, pain perception and brain cognitive state. Prolonged general anesthesia has an impact on many of these processes, but the regulation of peptides by general anesthetics is poorly understood. In this study, we present an in-depth characterization of the hypothalamic neuropeptides of the tree shrew during volatile isoflurane/nitrous oxide anesthesia administered accompanying a neurosurgical procedure.
View Article and Find Full Text PDFAcetylcholine is an important neuromodulator involved in cognitive function. The impact of cholinergic neuromodulation on computations within the cortical microcircuit is not well understood. Here we investigate the effects of layer-specific cholinergic drug application in the tree shrew primary visual cortex during visual stimulation with drifting grating stimuli of varying contrast and orientation.
View Article and Find Full Text PDFEntrainment of neural activity to luminance impulses during the refresh of cathode ray tube monitor displays has been observed in the primary visual cortex (V1) of humans and macaque monkeys. This entrainment is of interest because it tends to temporally align and thus synchronize neural responses at the millisecond timescale. Here we show that, in tree shrew V1, both spiking and local field potential activity are also entrained at cathode ray tube refresh rates of 120, 90, and 60 Hz, with weakest but still significant entrainment even at 120 Hz, and strongest entrainment occurring in cortical input layer IV.
View Article and Find Full Text PDF