Publications by authors named "Anwar F Alenezi"

Context: Congenital hypothyroidism (CH) is caused by mutations in the genes for thyroid hormone synthesis. In our previous investigation of CH patients, approximately 53% of patients had mutations in either coding exons or canonical splice sites of causative genes. Noncanonical splice-site variants in the intron were detected but their pathogenic significance was not known.

View Article and Find Full Text PDF

Context: Hypophosphatemic rickets (HR) is a group of rare hereditary renal phosphate wasting disorders caused by mutations in PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3.

Objective: A large kindred with 5 HR patients was recruited with dominant inheritance. The study was undertaken to investigate underlying genetic defects in HR patients.

View Article and Find Full Text PDF

Vitamin D-dependent rickets type 2A (VDDR2A) is a rare autosomal recessive disorder caused by mutations in the vitamin D receptor gene (), leading to end-organ resistance to 1,25-dihydroxyvitamin D (1,25[OH]D). The objective of this study was to investigate VDR mutations in 11 patients from 8 Turkish-Arab families. All coding exons and intron-exon boundaries of the gene were amplified by polymerase chain reaction from peripheral leukocyte DNA and sequenced.

View Article and Find Full Text PDF

Context: X-linked hypophosphatemic rickets (XLH) is caused by inactivating mutations in the PHEX gene and is the most common form of hereditary rickets. The splice-site mutations account for 17% of all reported PHEX mutations. The functional consequence of these splice-site mutations has not been systemically investigated.

View Article and Find Full Text PDF

Context: Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder, affecting one in 3000 to 4000 newborns. Since the introduction of a newborn screening program in 1988, more than 300 cases have been identified. The underlying genetic defects have not been systematically studied.

View Article and Find Full Text PDF

Background: Hereditary hypophosphatemia is a group of rare renal phosphate wasting disorders. The diagnosis is based on clinical, radiological, and biochemical features, and may require genetic testing to be confirmed.

Methodology: Clinical features and mutation spectrum were investigated in patients with hereditary hypophosphatemia.

View Article and Find Full Text PDF

Context: Hypophosphataemic rickets (HR) is a group of rare hereditary renal phosphate wasting disorders caused by mutations in PHEX, FGF23, DMP1, ENPP1, CLCN5 or SLC34A3.

Objective: To investigate underlying genetic defects in patients with hypophosphataemic rickets.

Methods: We analysed genomic DNA from nine unrelated families for mutations in the entire coding region of PHEX, FGF23, DMP1, ENPP1, CLCN5 or SLC34A3 by PCR sequencing and copy number analysis.

View Article and Find Full Text PDF