Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects.
View Article and Find Full Text PDFMost preclinical sleep studies are conducted in nocturnal rodents that have fragmented sleep in comparison to humans who are primarily diurnal, typically with a consolidated sleep period. Consequently, we sought to define basal sleep characteristics, sleep/wake architecture and electroencephalographic (EEG) activity in a diurnal non-human primate (NHP) to evaluate the utility of this species for pharmacological manipulation of the sleep/wake cycle. Adult, 9-11 y.
View Article and Find Full Text PDFChronic and acute agonism as well as acute antagonism of CB receptors reveal modulation of learning and memory during stable performance of a delayed-nonmatch-to-sample (DNMS) memory task. However, it remains unclear how chronic blockade of the CB receptor alters acquisition of the behavioral task. We examined the effects of chronic rimonabant exposure during DNMS task acquisition to determine if blockade of the CB receptor with the antagonist rimonabant enhanced acquisition of operant task.
View Article and Find Full Text PDFTrace amine-associated receptor 1 (TAAR1) is a G-protein coupled receptor with affinity for the trace amines. TAAR1 agonists have pro-cognitive, antidepressant-, and antipsychotic-like properties in both rodents and non-human primates (NHPs). TAAR1 agonism also increases wakefulness and suppresses rapid-eye movement (REM) sleep in mice and rats and reduces cataplexy in two mouse models of narcolepsy.
View Article and Find Full Text PDFA growing body of evidence indicates that neuronal oscillations in the gamma frequency range (30-80 Hz) are disturbed in schizophrenic patients during cognitive processes and may represent an endophenotype of the disease. N-methyl-D-aspartate (NMDA) receptor antagonists have been used experimentally to induce schizophrenia-like symptoms including cognitive deficits in animals and humans. Here we characterized neuronal oscillations and event-related potentials (ERPs) in Cynomolgus macaques fully trained to perform a continuous performance test (CPT) in the presence and absence of the NMDA antagonist phencyclidine (PCP).
View Article and Find Full Text PDFThe brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.
View Article and Find Full Text PDFA major factor involved in providing closed loop feedback for control of neural function is to understand how neural ensembles encode online information critical to the final behavioral endpoint. This issue was directly assessed in rats performing a short-term delay memory task in which successful encoding of task information is dependent upon specific spatio-temporal firing patterns recorded from ensembles of CA3 and CA1 hippocampal neurons. Such patterns, extracted by a specially designed nonlinear multi-input multi-output (MIMO) nonlinear mathematical model, were used to predict successful performance online via a closed loop paradigm which regulated trial difficulty (time of retention) as a function of the "strength" of stimulus encoding.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Neurobiological processes associated with learning are known to be highly nonlinear, dynamical, and time-varying. Characterizing the time-varying functional input-output properties of neural systems is a critical step to understand the neurobiological basis of learning. In this paper, we present a study on tracking of the changes of neural dynamics in rat hippocampus during learning of a memory-dependent delayed nonmatch-to-sample (DNMS) task.
View Article and Find Full Text PDFIn rodents, many exogenous cannabinoid agonists including Δ(9)-THC and WIN55,212-2 (WIN-2) have been shown to impair short-term memory (STM) by inhibition of hippocampal neuronal assemblies. However, the mechanisms by which endocannabinoids such as anandamide and 2-arachidonyl glycerol (2-AG) modulate STM processes are not well understood. Here the effects of anandamide on performance of a Delayed-Non-Match-to-Sample (DNMS) task (i.
View Article and Find Full Text PDFIt has previously been demonstrated that the detrimental effect on the performance of a delayed nonmatch to sample (DNMS) memory task by exogenously administered cannabinoid (CB1) receptor agonist, WIN 55212-2 (WIN), is reversed by the receptor antagonist rimonabant. In addition, rimonabant administered alone elevates DNMS performance, presumably through the suppression of negative modulation by released endocannabinoids during normal task performance. Other investigations have shown that rimonabant enhances encoding of DNMS task-relevant information on a trial-by-trial, delay-dependent basis.
View Article and Find Full Text PDFThe plant cannabinoid Δ(9)-tetrahydrocannabinol and the endocannabinoid anandamide increase the amount of sleep via a CB1 receptor mediated mechanism. Here, we explored the use of a novel electroencephalogram (EEG) recording device based on wireless EEG microchip technology (Neurologger) in freely-moving rats, and its utility in experiments of cannabinoids-induced alterations of EEG/vigilance stages. EEG was recorded through epidural electrodes placed above pre-frontal and parietal cortex (overlaying the dorsal hippocampus).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Delayed-nonmatch-to-sample (DNMS) task is memory-dependent. Hippocampal CA3 and CA1 cells were shown to be encoding the required spatial and temporal information to complete this task. In order to identify possible changes in neural population nonlinear dynamics during learning of the DNMS task, we have first modeled the input-output transformation of spike trains across brain subregions from learning animals using a multiple-input, multiple-output (MIMO) nonlinear dynamic model.
View Article and Find Full Text PDFIt is now well established that cannabinoid agonists such as Δ(9)-tetrahydrocannabinol (THC), anandamide, and WIN 55,212-2 (WIN-2) produce potent and specific deficits in working memory (WM)/short-term memory (STM) tasks in rodents. Although mediated through activation of CB1 receptors located in memory-related brain regions such as the hippocampus and prefrontal cortex, these may, in part, be due to a reduction in acetylcholine release (i.e.
View Article and Find Full Text PDFBoth natural and synthetic cannabinoid receptor (e.g., CB1) agonists such as Δ(9)-THC, WIN 55,212-2 (WIN-2), and HU-210 disrupt spatial cognition presumably through the inhibition of synchrony of hippocampal ensemble firing to task-related events.
View Article and Find Full Text PDFCannabinoids acting on CB(1) receptors induce learning and memory impairments. However, the identification of novel non-CB(1) receptors which are insensitive to the psychoactive ingredient of marijuana, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) but sensitive to synthetic cannabinoids such as WIN55,212-2 (WIN-2) or endocannabinoids like anandamide lead us to question whether WIN-2 induced learning and memory deficits are indeed mediated by CB(1) receptor activation. Given the relative paucity of receptor subtype specific antagonists, a way forward would be to determine the transmitter systems, which are modulated by the respective cannabinoids.
View Article and Find Full Text PDFSuccessful performance by rats of a delayed-nonmatch-to-sample (DNMS) task is hippocampal dependent. We have shown that neurons in hippocampus differentially encode task-relevant events. These responses are critical for correct DNMS performance and are diminished by exogenous cannabinoids.
View Article and Find Full Text PDFPopulation codes derived from ensembles of hippocampal neurons were assessed to determine whether endocannabinoids were active when rats performed a delayed-nonmatch-to-sample (DNMS) short-term memory task. Multivariate discriminant analyses of the firing patterns of ensembles of CA1 and CA3 hippocampal neurons extracted representations of information encoded at the time of the sample response (SmR codes) during individual DNMS trials. The 'strength' or distinctiveness of trial-specific SmR codes in normal sessions was compared with sessions in which either rimonabant, the well-characterized cannabinoid CB1 receptor antagonist, or WIN 55212-2 (WIN-2), a cannabinoid CB1 receptor agonist, were administered.
View Article and Find Full Text PDF