The determination of water quality heavily depends on the selection of parameters recorded from water samples for the water quality index (WQI). Data-driven methods, including machine learning models and statistical approaches, are frequently used to refine the parameter set for four main reasons: reducing cost and uncertainty, addressing the eclipsing problem, and enhancing the performance of models predicting the WQI. Despite their widespread use, there is a noticeable gap in comprehensive reviews that systematically examine previous studies in this area.
View Article and Find Full Text PDFElectroencephalography (EEG) is used to detect brain activity by recording electrical signals across various points on the scalp. Recent technological advancement has allowed brain signals to be monitored continuously through the long-term usage of EEG wearables. However, current EEG electrodes are not able to cater to different anatomical features, lifestyles, and personal preferences, suggesting the need for customisable electrodes.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
June 2023
For the care of neonatal infants, abdominal auscultation is considered a safe, convenient, and inexpensive method to monitor bowel conditions. With the help of early automated detection of bowel dysfunction, neonatologists could create a diagnosis plan for early intervention. In this article, a novel technique is proposed for automated peristalsis sound detection from neonatal abdominal sound recordings and compared to various other machine learning approaches.
View Article and Find Full Text PDF