The optimum condition at which the halophilic salt-tolerant bacterium (MTCC 3712) produces the maximum amount of extracellular polymeric substances (EPS) was investigated experimentally using response surface methodology based on the central composite design (CCD). Hyper-saline medium containing 1.5% w/v NaCl enriched nutrient medium with 1.
View Article and Find Full Text PDFThe impact caused by dye effluent discharge on the environment is well known. The study explores a hybrid method of combining Fenton oxidation with biological treatment by a defined bacterial consortium for the biodegradation of an effluent containing toxic azo dye (acid blue 113). In actual treatment process, the fluctuation in toxic load and presence of other dyeing chemical inhibits the activity of the bacterial consortium.
View Article and Find Full Text PDFAir flow rate and agitation speed for inulinase production by Kluyveromyces marxianus were optimized based on metabolic heat release profiles. Shear stress and oxygen transfer (ka) values were compared to assess the effects of aeration and agitation. At agitation rates of ≤ 100 rpm, the oxygen mass transfer rates were small and eventually led to less inulinase production, but at agitation rates > 150 rpm, loss of biomass resulted in less inulinase activity.
View Article and Find Full Text PDFBioplastic production from microbial sources is an emerging area which provides opportunities even to convert the wastes into bioplastics. Poly (3-hydroxybutyric acid), commonly called as PHB, is a bioplastic, which is stored as intracellular cytoplasmic inclusions in microorganisms. The objectives of this study are to calorimetrically monitor the PHB production and evaluate the thermokinetic data in a bioreaction calorimeter (BioRC1e).
View Article and Find Full Text PDF