Publications by authors named "Anusha Ramdarshan"

Enamel thickness is highly susceptible to natural selection because thick enamel may prevent tooth failure. Consequently, it has been suggested that primates consuming stress-limited food on a regular basis would have thick-enameled molars in comparison to primates consuming soft food. Furthermore, the spatial distribution of enamel over a single tooth crown is not homogeneous, and thick enamel is expected to be more unevenly distributed in durophagous primates.

View Article and Find Full Text PDF

Objectives: Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance.

View Article and Find Full Text PDF

Both dust and silica phytoliths have been shown to contribute to reducing tooth volume during chewing. However, the way and the extent to which they individually contribute to tooth wear in natural conditions is unknown. There is still debate as to whether dental microwear represents a dietary or an environmental signal, with far-reaching implications on evolutionary mechanisms that promote dental phenotypes, such as molar hypsodonty in ruminants, molar lengthening in suids or enamel thickening in human ancestors.

View Article and Find Full Text PDF

While grazing as a selective factor towards hypsodont dentition on mammals has gained a lot of attention, the importance of fruits and seeds as fallback resources for many browsing ungulates has caught much less attention. Controlled-food experiments, by reducing the dietary range, allow for a direct quantification of the effect of each type of items separately on enamel abrasion. We present the results of a dental microwear texture analysis on 40 ewes clustered into four different controlled diets: clover alone, and then three diets composed of clover together with either barley, corn, or chestnuts.

View Article and Find Full Text PDF

Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have resulted in the discovery of a late Oligocene (ca. 26.5 Ma; Chambira Formation) fossil primate-bearing locality (CTA-61).

View Article and Find Full Text PDF

Objectives: Innovations in brain structure and increase in brain size relative to body mass are key features of Primates evolutionary history. Surprisingly, the endocranial morphology of early Euprimates is still rather poorly known, and our understanding of early euprimate brain evolution (Eocene epoch) relies on a handful of specimens.

Materials And Methods: In this article, we describe the endocranial cast of the tarsiiform Microchoerus erinaceus from the late Early Eocene of Perrière (Quercy fissure filling, France) based on a virtual reconstruction extracted from CT scan data of the endocranial cavity of the complete, undeformed specimen UM-PRR1771.

View Article and Find Full Text PDF

Although advanced anthropoid primates (i.e., Simiiformes) are recorded at the end of the Eocene in North Africa (Proteopithecidae, Parapithecidae, and Oligopithecidae), the origin and emergence of this group has so far remained undocumented.

View Article and Find Full Text PDF

Background: Molecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary.

View Article and Find Full Text PDF

The present study attempts to characterize the environmental conditions that prevailed along the western shores of the Central Paratethys and its hinterland during the early middle Miocene at the same time t primates reached their peak in species diversity in Central Europe. Based on faunal structure (using cenograms), paleotemperature reconstruction (using cricetid diversity), and dietary reconstruction of ruminants (using molar micro-wear analyses), four faunal assemblages are used to characterize the regional environmental context. The cenograms for Göriach and Devínska Novà Ves Zapfe's fissure site support the presence of mosaic environments with open areas under rather humid conditions.

View Article and Find Full Text PDF

Diet is of paramount importance in the life of a primate. It is also highly variable, as potential food sources vary in spatial distribution and availability over time. The fossil record, due to its fragmentary nature, offers few possibilities to assess the dietary range of a given primate across its spatial and temporal distribution.

View Article and Find Full Text PDF

Dental microwear analysis is conducted on a community of platyrrhine primates from South America. This analysis focuses on the primate community of Cachoeira Porteira (Para, Brazil), in which seven sympatric species occur: Alouatta seniculus, Ateles paniscus, Cebus apella, Chiropotes satanas, Pithecia Pithecia, Saguinus midas, and Saimiri sciureus. Shearing quotients are also calculated for each taxon of this primate community.

View Article and Find Full Text PDF

The primate family, Amphipithecidae, lived during the early Cenozoic in South Asia. In this study, the diet of late middle Eocene amphipithecids from the Pondaung Formation (Central Myanmar) is characterized using three different approaches: body mass estimation, shearing quotient quantification and dental microwear analysis. Our results are compared with other Paleogene amphipithecids from Thailand and Pakistan, and to the other members of the primate community from the Pondaung Formation.

View Article and Find Full Text PDF