Publications by authors named "Anusha Gunasekera"

Ionizing radiation (UV, X-ray and ɣ) administered at an appropriate dose to pathogenic organisms can prevent replication while preserving metabolic activity. We have established the GMP process for attenuation by ionizing radiation of the (Pf) sporozoites (SPZ) in Sanaria PfSPZ Vaccine, a protective vaccine against malaria. Mosquitoes raised and infected aseptically with Pf were transferred into infected mosquito transport containers (IMTC) and ɣ-irradiated using a Co source.

View Article and Find Full Text PDF

The global decline in malaria has stalled, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847).

View Article and Find Full Text PDF

Background: A live-attenuated Plasmodium falciparum sporozoite (SPZ) vaccine (PfSPZ Vaccine) has shown up to 100% protection against controlled human malaria infection (CHMI) using homologous parasites (same P. falciparum strain as in the vaccine). Using a more stringent CHMI, with heterologous parasites (different P.

View Article and Find Full Text PDF

Direct venous inoculation of 3.2 × 103 aseptic, purified, cryopreserved, vialed Plasmodium falciparum (Pf) strain NF54 sporozoites, PfSPZ Challenge (NF54), has been used for controlled human malaria infection (CHMI) in the United States, 4 European countries, and 6 African countries. In nonimmune adults, this results in 100% infection rates.

View Article and Find Full Text PDF

A live-attenuated malaria vaccine, sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.

View Article and Find Full Text PDF

Background: Plasmodium falciparum sporozite (PfSPZ) Vaccine is a metabolically active, non-replicating, whole malaria sporozoite vaccine that has been reported to be safe and protective against P falciparum controlled human malaria infection in malaria-naive individuals. We aimed to assess the safety and protective efficacy of PfSPZ Vaccine against naturally acquired P falciparum in malaria-experienced adults in Mali.

Methods: After an open-label dose-escalation study in a pilot safety cohort, we did a double-blind, randomised, placebo-controlled trial based in Donéguébougou and surrounding villages in Mali.

View Article and Find Full Text PDF

A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac).

View Article and Find Full Text PDF

: A radiation-attenuated (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. : The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects.

View Article and Find Full Text PDF

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.

View Article and Find Full Text PDF

Immunization of volunteers under chloroquine prophylaxis by bites of Plasmodium falciparum sporozoite (PfSPZ)-infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied intradermal immunization with cryopreserved, infectious PfSPZ in volunteers taking chloroquine (PfSPZ chemoprophylaxis vaccine [CVac]). Vaccine groups 1 and 3 received 3× monthly immunizations with 7.

View Article and Find Full Text PDF

Background: Controlled human malaria infection (CHMI) by mosquito bite is a powerful tool for evaluation of vaccines and drugs against Plasmodium falciparum malaria. However, only a small number of research centres have the facilities required to perform such studies. CHMI by needle and syringe could help to accelerate the development of anti-malaria interventions by enabling centres worldwide to employ CHMI.

View Article and Find Full Text PDF

Background: Controlled human malaria infection (CHMI) accelerates development of anti-malarial interventions. So far, CHMI is done by exposure of volunteers to bites of five mosquitoes carrying Plasmodium falciparum sporozoites (PfSPZ), a technique available in only a few centres worldwide. Mosquito-mediated CHMI is logistically complex, exact PfSPZ dosage is impossible and live mosquito-based interventions are not suitable for further clinical development.

View Article and Find Full Text PDF

Background: Controlled human malaria infection (CHMI) studies are a vital tool to accelerate vaccine and drug development. As CHMI trials are performed in a controlled environment, they allow unprecedented, detailed evaluation of parasite growth dynamics (PGD) and immunological responses. However, CHMI studies have not been routinely performed in malaria-endemic countries or used to investigate mechanisms of naturally-acquired immunity (NAI) to Plasmodium falciparum.

View Article and Find Full Text PDF

Controlled human malaria infection (CHMI) by mosquito bite has been used to assess anti-malaria interventions in > 1,500 volunteers since development of methods for infecting mosquitoes by feeding on Plasmodium falciparum (Pf) gametocyte cultures. Such CHMIs have never been used in Africa. Aseptic, purified, cryopreserved Pf sporozoites, PfSPZ Challenge, were used to infect Dutch volunteers by intradermal injection.

View Article and Find Full Text PDF

A 23-year-old healthy male volunteer took part in a clinical trial in which the volunteer took chloroquine chemoprophylaxis and received three intradermal doses at four-week intervals of aseptic, purified Plasmodium falciparum sporozoites to induce protective immunity against malaria. Fifty-nine days after the last administration of sporozoites and 32 days after the last dose of chloroquine the volunteer underwent controlled human malaria infection (CHMI) by the bites of five P. falciparum-infected mosquitoes.

View Article and Find Full Text PDF

Consistent, high-level, vaccine-induced protection against human malaria has only been achieved by inoculation of Plasmodium falciparum (Pf) sporozoites (SPZ) by mosquito bites. We report that the PfSPZ Vaccine--composed of attenuated, aseptic, purified, cryopreserved PfSPZ--was safe and well tolerated when administered four to six times intravenously (IV) to 40 adults. Zero of six subjects receiving five doses and three of nine subjects receiving four doses of 1.

View Article and Find Full Text PDF

Unlabelled: Controlled human malaria infection (CHMI) is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf) sporozoite (SPZ)-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP) was successful in 6 participants.

View Article and Find Full Text PDF

Background: Controlled human malaria infection (CHMI) studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P.

View Article and Find Full Text PDF

Controlled human malaria infection with sporozoites is a standardized and powerful tool for evaluation of malaria vaccine and drug efficacy but so far only applied by exposure to bites of Plasmodium falciparum (Pf)-infected mosquitoes. We assessed in an open label Phase 1 trial, infection after intradermal injection of respectively 2,500, 10,000, or 25,000 aseptic, purified, vialed, cryopreserved Pf sporozoites (PfSPZ) in three groups (N = 6/group) of healthy Dutch volunteers. Infection was safe and parasitemia developed in 15 of 18 volunteers (84%), 5 of 6 volunteers in each group.

View Article and Find Full Text PDF

Antigenic polymorphism displayed by malaria parasites is a skewed schema to escape the host immune system. The prevailing genetic diversity at domain II of the Plasmodium vivax Apical Membrane Antigen-1 (Pvama-1DII) was characterized in 64 single clone P. vivax isolates from Sri Lanka, where unstable malaria prevails with low intensity.

View Article and Find Full Text PDF

Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine.

View Article and Find Full Text PDF

A genomic approach was taken to study the effect of chloroquine (CQ) on Plasmodium falciparum cultures in multiple cell states, following short and long exposures to drug at varying concentrations. Six hundred genes from numerous functional groups were responsive to CQ amongst all cell states assayed in a micro-array analysis; however, the amplitude of fold-change was low in the majority of cases. Moreover, alterations in specific, functionally related cascades could not be discerned, leading us to believe there is no single signature response to CQ at the transcript level in P.

View Article and Find Full Text PDF

Control of gene expression is poorly understood in the Plasmodium system, where relatively few homologues to known eukaryotic transcription factors have been uncovered. Recent evidence suggests that the parasite may utilize a combinatorial mode of gene regulation, with multiple cis-acting sequences contributing to overall activity at individual promoters [1]. To further probe this mechanism of control, we first searched for over-represented sequence motifs among gene clusters sharing similar expression profiles in Plasmodium falciparum.

View Article and Find Full Text PDF