Publications by authors named "Anurupa Shrestha"

Article Synopsis
  • Dysregulation of IL17A is linked to various inflammatory and autoimmune diseases, and using antibodies to inhibit it has shown to be an effective treatment option.
  • Researchers discovered a new class of small molecule inhibitors targeting IL17A through a DNA-encoded chemical library screening process.
  • These innovative inhibitors operate by binding symmetrically to the central cavities of the IL17A homodimer, utilizing a previously unknown interaction mode, and have been optimized for effectiveness in living organisms.
View Article and Find Full Text PDF

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality.

View Article and Find Full Text PDF

Using a convergent synthetic route to enable multiple points of diversity, a series of glucocorticoid receptor modulators (GRM) were profiled for potency, selectivity, and drug-like properties . Despite covering a large range of diversity, profiling the nonconjugated small molecule was suboptimal and they were conjugated to a mouse antitumor necrosis factor (TNF) antibody using the MP-Ala-Ala linker. Screening of the resulting antibody drug conjugates (ADCs) provided a better assessment of efficacy and physical properties, reinforcing the need to conduct structure-activity relationship studies on the complete ADC.

View Article and Find Full Text PDF

Glucocorticoid receptor modulators (GRM) are the first-line treatment for many immune diseases, but unwanted side effects restrict chronic dosing. However, targeted delivery of a GRM payload via an immunology antibody-drug conjugate (iADC) may deliver significant efficacy at doses that do not lead to unwanted side effects. We initiated our α-TNF-GRM ADC project focusing on identifying the optimal payload and a linker that afforded stable attachment to both the payload and antibody, resulting in the identification of the synthetically accessible maleimide-Gly-Ala-Ala linker.

View Article and Find Full Text PDF

Parallel library synthesis is an important tool for drug discovery because it enables the synthesis of closely related analogues in parallel via robust and general synthetic transformations. In this perspective, we analyzed the synthetic methodologies used in >5000 parallel libraries representing 15 prevalent synthetic transformations. The library data set contains complex substrates and diverse arrays of building blocks used over the last 14 years at AbbVie.

View Article and Find Full Text PDF

Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders.

View Article and Find Full Text PDF

S1P5 is one of 5 receptors for sphingosine-1-phosphate and is highly expressed on endothelial cells within the blood-brain barrier, where it maintains barrier integrity in in vitro models (J. Neuroinflamm. 2012, 9, 133).

View Article and Find Full Text PDF

We have previously shown that simple N-acyl or N-alkyl polyamines bind to and sequester Gram-negative bacterial lipopolysaccharide, affording protection against lethality in animal models of endotoxicosis. Several iterative design-and-test cycles of SAR studies, including high-throughput screens, had converged on compounds with polyamine scaffolds which have been investigated extensively with reference to the number, position, and length of acyl or alkyl appendages. However, the polyamine backbone itself had not been explored sufficiently, and it was not known if incremental variations on the polymethylene spacing would affect LPS-binding and neutralization properties.

View Article and Find Full Text PDF

The pharmacokinetics of DS-96, an N-alkylhomospermine analog designed to sequester bacterial lipopolysaccharides, has been determined in rodent species. The elimination half-life in mice and rats are about 400 and 500 min, respectively, with other PK parameters being quite similar in the two rodent species. Interestingly, the mouse intravenous plasma concentration time curves exhibit an apparent absorption phase.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS), or endotoxin, a structural component of gram-negative bacterial outer membranes, plays a key role in the pathogenesis of septic shock, a syndrome of severe systemic inflammation which leads to multiple-system organ failure. Despite advances in antimicrobial chemotherapy, sepsis continues to be the commonest cause of death in the critically ill patient. This is attributable to the lack of therapeutic options that aim at limiting the exposure to the toxin and the prevention of subsequent downstream inflammatory processes.

View Article and Find Full Text PDF