Nanoscale
April 2020
The unique combination of piezoelectric energy harvesters and light detectors progressively strengthens their application in the development of modern electronics. Here, for the first time, we fabricated a polyvinylidene fluoride (PVDF) and formamidinium lead bromide nanoparticle (FAPbBr3 NP)-based composite aerogel film (FAPbBr3/PVDF) for harvesting electrical energy and photodetector applications. The uniform distribution of FAPbBr3 NPs in FAPbBr3/PVDF was achieved via the in situ synthesis of FAPbBr3 NPs in the PVDF matrix, which led to the stabilization of the γ-phase.
View Article and Find Full Text PDFNanoscale
December 2019
Here, we have fabricated a piezoelectric nanogenerator (PENG) composed of a Co-oxide (CoO) doped electro active PVDF based nanocomposite for efficient piezoelectric energy harvesting application where the CoO inclusion favours nucleation and polar β-phase stabilization in the nanocomposite. The morphological effect on the nucleation and β-phase stabilisation of PVDF has been explored experimentally. The flake-like morphology of CoO nanoparticles, synthesized by using a MOF, has a more effective surface area to nucleate and stabilise the β-phase of PVDF than that of rod-like (hydrothermal) and spherical (commercial) nanoparticles.
View Article and Find Full Text PDFThe expeditious growth of portable electronics has endorsed the researchers to develop self-powered devices that synchronically harvest and store energy. However, it is quite challenging to integrate two distinct phenomena in a single portable device. Here, we emphasize the fabrication of a triboelectric driven self-charging and self-healing asymmetric supercapacitor (SCSHASC) power cell composed of magnetic cobalt ferrite grown on a stainless steel (SS) fabric (CoFeO@SS) as positive and iron oxides decorated reduced graphene oxide grown on a SS fabric (Fe-RGO@SS) as negative electrodes separated by a KOH-soaked self-healing polymer hydrogel electrolyte membrane.
View Article and Find Full Text PDFA rhodium catalyzed direct regioselective oxidative annulation by double C-H activation is described to synthesize highly substituted quinolones from pyridones. The reaction proceeds at mild conditions with broad scope and wide functional group tolerance. These novel quinolones were explored to recognize nitroaromatic compounds.
View Article and Find Full Text PDF