Publications by authors named "Anuratha Sakthianandeswaren"

Predictive drug testing of patient-derived tumor organoids (PDTOs) holds promise for personalizing treatment of metastatic colorectal cancer (mCRC), but prospective data are limited to chemotherapy regimens with conflicting results. We describe a unified framework for PDTO-based predictive testing across standard-of-care chemotherapy and biologic and targeted therapy options. In an Australian community cohort, PDTO predictions based on treatment-naive patients (n = 56) and response rates from first-line mCRC clinical trials achieve 83% accuracy for forecasting responses in patients receiving palliative treatments (18 patients, 29 treatments).

View Article and Find Full Text PDF

Background & Aims: Dysbiosis of gut microbiota is linked to the development of colorectal cancer (CRC). However, microbiota-based stratification of CRC tissue and how this relates to clinicomolecular characteristics and prognosis remains to be clarified.

Methods: Tumor and normal mucosa from 423 patients with stage I to IV CRC were profiled by bacterial 16S rRNA gene sequencing.

View Article and Find Full Text PDF

The canonical view of PI3Kα signaling describes phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) generation and activation of downstream effectors at the plasma membrane or at microtubule-bound endosomes. Here, we show that colorectal cancer (CRC) cell lines exhibit a diverse plasma membrane-nuclear distribution of PI3Kα, controlling corresponding levels of subcellular PtdIns(3,4,5)P pools. PI3Kα nuclear translocation was mediated by the importin β-dependent nuclear import pathway.

View Article and Find Full Text PDF

Three-dimensional culture of human normal colorectal epithelium and cancer tissue as organoids and tumoroids has transformed the study of diseases of the large intestine. A widely used strategy for generating patient-derived colorectal organoids and tumoroids involves embedding cells in domes of extracellular matrix (ECM). Despite its success, dome culture is not ideal for scalable expansion, experimentation, and high-throughput screening applications.

View Article and Find Full Text PDF

Hyperactivation of SRC-family protein kinases (SFKs) contributes to the initiation and progression of human colorectal cancer (CRC). Since oncogenic mutations of SFK genes are rare in human CRC, we investigated if SFK hyperactivation is linked to dysregulation of their upstream inhibitors, C-terminal SRC kinase (CSK) and its homolog CSK-homologous kinase (CHK/MATK). We demonstrate that expression of CHK/MATK but not CSK was significantly downregulated in CRC cell lines and primary tumours compared to normal colonic tissue.

View Article and Find Full Text PDF

Novel targets are required to improve the outcomes for patients with colorectal cancers. In this regard, the selective inhibitor of the pro-survival protein BCL2, venetoclax, has proven highly effective in several hematological malignancies. In addition to BCL2, potent and highly selective small molecule inhibitors of its relatives, BCLxL and MCL1, are now available, prompting us to investigate the susceptibility of colorectal cancers to the inhibition of one or more of these pro-survival proteins.

View Article and Find Full Text PDF

Mucinous colorectal adenocarcinoma (CRC) is conventionally defined by extracellular mucin comprising >50% of the tumour area, while tumours with ≤50% mucin are designated as having a mucinous component. However, these definitions are largely arbitrary and comparisons of clinico-molecular features and outcomes by proportion of mucinous component are limited. A cohort of 1643 patients with stage II/III cancer was examined for tumour mucinous component, DNA mismatch repair (MMR) status, BRAF mutation and tumour infiltrating lymphocytes (TILs).

View Article and Find Full Text PDF

ADP-ribosylation is an important posttranslational protein modification that regulates diverse biological processes, controlled by dedicated transferases and hydrolases. Here, we show that frequent deletions (∼30%) of the mono-ADP-ribosylhydrolase locus in human colorectal cancer cause impaired PARP1 transferase activity in a gene dosage-dependent manner. haploinsufficiency alters DNA repair and sensitivity to DNA damage and results in chromosome instability.

View Article and Find Full Text PDF

Objective: Tumour-infiltrating lymphocyte (TIL) response and deficient DNA mismatch repair (dMMR) are determinants of prognosis in colorectal cancer. Although highly correlated, evidence suggests that these are independent predictors of outcome. However, the prognostic significance of combined TIL/MMR classification and how this compares to the major genomic and transcriptomic subtypes remain unclear.

View Article and Find Full Text PDF

Background: APC mutations (APC-mt) occur in ∼70% of colorectal cancers (CRCs), but their relationship to prognosis is unclear.

Methods: APC prognostic value was evaluated in 746 stage I-IV CRC patients, stratifying for tumour location and microsatellite instability (MSI). Microarrays were used to identify a gene signature that could classify APC mutation status, and classifier ability to predict prognosis was examined in an independent cohort.

View Article and Find Full Text PDF

The progression of benign colorectal adenomas into cancer is associated with the accumulation of chromosomal aberrations. Even though patterns and frequencies of chromosomal aberrations have been well established in colorectal carcinomas, corresponding patterns of aberrations in adenomas are less well documented. The aim of this study was to profile chromosomal aberrations across colorectal adenomas and carcinomas to provide a better insight into key changes during tumor initiation and progression.

View Article and Find Full Text PDF

Purpose: PIK3CA and PTEN mutations are prevalent in colorectal cancer and potential markers of response to mitogen-activated protein/extracellular signal-regulated kinase inhibitors and anti-EGF receptor antibody therapy. Relationships between phosphoinositide 3-kinase (PI3K) pathway mutation, clinicopathologic characteristics, molecular features, and prognosis remain controversial.

Experimental Design: A total of 1,093 stage I-IV colorectal cancers were screened for PIK3CA (exons 9 and 20), KRAS (codons 12-13), BRAF (codon 600) mutations, and microsatellite instability (MSI).

View Article and Find Full Text PDF

Background: Prevalence of colorectal cancer (CRC) in the British Bangladeshi population (BAN) is low compared to British Caucasians (CAU). Genetic background may influence mutations and disease features.

Methods: We characterized the clinicopathological features of BAN CRCs and interrogated their genomes using mutation profiling and high-density single nucleotide polymorphism (SNP) arrays and compared findings to CAU CRCs.

View Article and Find Full Text PDF

Activation of the canonical TGF-β signaling pathway provides growth inhibitory signals in the normal intestinal epithelium. Colorectal cancers (CRCs) frequently harbor somatic mutations in the pathway members TGFBR2 and SMAD4, but to what extent mutations in SMAD2 or SMAD3 contribute to tumorigenesis is unclear. A cohort of 744 primary CRCs and 36 CRC cell lines were sequenced for SMAD4, SMAD2, and SMAD3 and analyzed for allelic loss by single-nucleotide polymorphism (SNP) microarray analysis.

View Article and Find Full Text PDF

Studies employing mouse models have identified crypt base and position +4 cells as strong candidates for intestinal epithelial stem cells. Equivalent cell populations are thought to exist in the human intestine; however robust and specific protein markers are lacking. Here, we show that in the human small and large intestine, PHLDA1 is expressed in discrete crypt base and some position +4 cells.

View Article and Find Full Text PDF

Genetic linkage studies of the host response to Leishmania major, the causative agent of cutaneous leishmaniasis, have identified significant genetic complexity in humans and mice. In the mouse model, multiple loci have been implicated in susceptibility to infection, but to date, the genes underlying these loci have not been identified. We now describe the contribution of a novel candidate gene, Fli1, to both L.

View Article and Find Full Text PDF

Leishmaniasis is one of the world's important infectious diseases. It is prevalent in tropical and subtropical regions of the world and endemic in 88 countries, with two million new cases of leishmaniasis reported annually. As a complex disease, the pathology of leishmaniasis varies and is determined by factors such as the environment, the insect vector, and parasite and host genetics.

View Article and Find Full Text PDF

Leishmaniasis is a disease that ranges in severity from skin lesions to serious disfigurement and fatal systemic infection. WHO estimates that the disease results in 2 million new cases a year, threatens 350 million people in 88 countries and that there are 12 million people currently infected worldwide. Current treatment is based on chemotherapy, which relies on a handful of drugs with serious limitations such as high cost, toxicity, difficult route of administration and lack of efficacy in endemic areas.

View Article and Find Full Text PDF

Chronic microbial infections are associated with fibrotic and inflammatory reactions known as granulomas showing similarities to wound-healing and tissue repair processes. We have previously mapped three leishmaniasis susceptibility loci, designated lmr1, -2, and -3, which exert their effect independently of T cell immune responses. Here, we show that the wound repair response is critically important for the rapid cure in murine cutaneous leishmaniasis caused by Leishmania major.

View Article and Find Full Text PDF