Publications by authors named "Anurag Tk Baidya"

The escalating prevalence of Alzheimer's disease (AD) has prompted extensive research into potential therapeutic interventions, with a specific focus on molecular targets such as amyloid beta (Aβ) and tau protein aggregation. In this study, a series of α-ketoamide derivatives was synthesized from β,γ-unsaturated α-keto thioesters, achieving high purity and good yield. Thioflavin T based Aβ aggregation assay identified four promising compounds (BD19, BD23, BD24, and BD27) that demonstrated significant inhibitory effects on Aβ aggregation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD.

View Article and Find Full Text PDF

Decaprenylphosphoryl-β-d-ribose-2'-epimerase (DprE1) is a druggable target which is being exploited for the development of new anti-TB agents. In the present work, we report developing a pharmacophore model and performing virtual screening of Asinex database using the developed pharmacophore model to get eight hits as potential DprE1 inhibitors. The hits were used as leads to design new 3-phenylpyrazolo[1,5-]pyrimidine-2,7(1,4)-dione based potential anti-TB agents.

View Article and Find Full Text PDF

Liver X Receptors (LXRs) are members of the nuclear receptor superfamily that regulate cholesterol metabolism. LXRs have been suggested as promising targets against many neurodegenerative diseases (NDDs). The present study was aimed to identify novel non-steroidal molecules that may potentially modulate LXR activity.

View Article and Find Full Text PDF

The native function of amyloid-β (Aβ) peptides is still unexplored. However, several recent reports suggest a prominent role of Aβ peptides in acetylcholine homeostasis. To clarify this role of Aβ, we have reported that Aβ peptides at physiological concentrations can directly enhance the catalytic efficiency of the key cholinergic enzyme, choline acetyltransferase (ChAT), via an allosteric interaction.

View Article and Find Full Text PDF